
Oracle9i: PL/SQL Fundamentals

Student Guide

40055GC11
Production 1.1
November 2001
D34069

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Authors

Priya Nathan

Technical Contributors
and Reviewers

Anna Atkinson
Cesljas Zarco
Chaya Rao
Coley William
Daniel Gabel
Dr. Christoph Burandt
Helen Robertson
Judy Brink
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Nagavalli Pataballa
Robert Squires
Sarah Jones
Stefan Lindblad
Sue Onraet
Susan Dee

Publisher

May Lonn Chan-Villareal

Preface

Curriculum Map

Introduction
Course Objectives I-2
About PL/SQL I-3
PL/SQL Environment I-4
Benefits of PL/SQL I-5
Summary I-10

1 Declaring Variables
Objectives 1-2
PL/SQL Block Structure 1-3
Executing Statements and PL/SQL Blocks 1-4
Block Types 1-5
Program Constructs 1-6
Use of Variables 1-7
Handling Variables in PL/SQL 1-8
Types of Variables 1-9
Using iSQL*Plus Variables Within PL/SQL Blocks 1-10
Types of Variables 1-11
Declaring PL/SQL Variables 1-12
Guidelines for Declaring PL/SQL Variables 1-13
Naming Rules 1-14
Variable Initialization and Keywords 1-15
Scalar Data Types 1-17
Base Scalar Data Types 1-18
Scalar Variable Declarations 1-22
The %TYPE Attribute 1-23
Declaring Variables with the %TYPE Attribute 1-24
Declaring Boolean Variables 1-25
Composite Data Types 1-26
LOB Data Type Variables 1-27
Bind Variables 1-28
Using Bind Variables 1-30
Referencing Non-PL/SQL Variables 1-31
DBMS_OUTPUT.PUT_LINE 1-32
Summary 1-33
Practice 1 Overview 1-35

Contents

iii

2 Writing Executable Statements
Objectives 2-2
PL/SQL Block Syntax and Guidelines 2-3
Identifiers 2-5
PL/SQL Block Syntax and Guidelines 2-6
Commenting Code 2-7
SQL Functions in PL/SQL 2-8
SQL Functions in PL/SQL: Examples 2-9
Data Type Conversion 2-10
Nested Blocks and Variable Scope 2-13
Identifier Scope 2-15
Qualify an Identifier 2-16
Determining Variable Scope 2-17
Operators in PL/SQL 2-18
Programming Guidelines 2-20
Indenting Code 2-21
Summary 2-22
Practice 2 Overview 2-23

3 Interacting with the Oracle Server
Objectives 3-2
SQL Statements in PL/SQL 3-3
SELECT Statements in PL/SQL 3-4
Retrieving Data in PL/SQL 3-7
Naming Conventions 3-9
Manipulating Data Using PL/SQL 3-10
Inserting Data 3-11
Updating Data 3-12
Deleting Data 3-13
Merging Rows 3-14
Naming Conventions 3-16
SQL Cursor 3-18
SQL Cursor Attributes 3-19
Transaction Control Statements 3-21
Summary 3-22
Practice 3 Overview 3-24

iv

4 Writing Control Structures
Objectives 4-2
Controlling PL/SQL Flow of Execution 4-3
IF Statements 4-4
Simple IF Statements 4-5
Compound IF Statements 4-6
IF-THEN-ELSE Statement Execution Flow 4-7
IF-THEN-ELSE Statements 4-8
IF-THEN-ELSIF Statement Execution Flow 4-9
IF-THEN-ELSIF Statements 4-11
CASE Expressions 4-12
CASE Expressions: Example 4-13
Handling Nulls 4-15
Logic Tables 4-16
Boolean Conditions 4-17
Iterative Control: LOOP Statements 4-18
Basic Loops 4-19
WHILE Loops 4-21
FOR Loops 4-23
Guidelines While Using Loops 4-26
Nested Loops and Labels 4-27
Summary 4-29
Practice 4 Overview 4-30

5 Working with Composite Data Types
Objectives 5-2
Composite Data Types 5-3
PL/SQL Records 5-4
Creating a PL/SQL Record 5-5
PL/SQL Record Structure 5-7
The %ROWTYPE Attribute 5-8
Advantages of Using %ROWTYPE 5-10
The %ROWTYPE Attribute 5-11
INDEX BY Tables 5-13
Creating an INDEX BY Table 5-14
INDEX BY Table Structure 5-15
Creating an INDEX BY Table 5-16
Using INDEX BY Table Methods 5-17
INDEX BY Table of Records 5-18
Example of INDEX BY Table of Records 5-19
Summary 5-20
Practice 5 Overview 5-21

v

6 Writing Explicit Cursors
Objectives 6-2
About Cursors 6-3
Explicit Cursor Functions 6-4
Controlling Explicit Cursors 6-5
Declaring the Cursor 6-9
Opening the Cursor 6-11
Fetching Data from the Cursor 6-12
Closing the Cursor 6-14
Explicit Cursor Attributes 6-15
The %ISOPEN Attribute 6-16
Controlling Multiple Fetches 6-17
The %NOTFOUND and %ROWCOUNT Attributes 6-18
Example 6-20
Cursors and Records 6-21
Cursor FOR Loops 6-22
Cursor FOR Loops Using Subqueries 6-24
Summary 6-26
Practice 6 Overview 6-27

7 Advanced Explicit Cursor Concepts
Objectives 7-2
Cursors with Parameters 7-3
The FOR UPDATE Clause 7-5
The WHERE CURRENT OF Clause 7-7
Cursors with Subqueries 7-9
Summary 7-10
Practice 7 Overview 7-11

8 Handling Exceptions
Objectives 8-2
Handling Exceptions with PL/SQL 8-3
Handling Exceptions 8-4
Exception Types 8-5
Trapping Exceptions 8-6
Trapping Exceptions Guidelines 8-7
Trapping Predefined Oracle Server Errors 8-8

vi

Predefined Exceptions 8-11
Trapping Nonpredefined Oracle Server Errors 8-12
Nonpredefined Error 8-13
Functions for Trapping Exceptions 8-14
Trapping User-Defined Exceptions 8-16
User-Defined Exceptions 8-17
Calling Environments 8-18
Propagating Exceptions 8-19
The RAISE_APPLICATION_ERROR Procedure 8-20
RAISE_APPLICATION_ERROR 8-22
Summary 8-23
Practice 8 Overview 8-24

A Practice Solutions

B Table Description and Data

C REF Cursors

Additional Practices

Additional Practice Solutions

Index

vii

Preface

Oracle9i: PL/SQL Fundamentals Preface - 2

Oracle9i: PL/SQL Fundamentals Preface - 3

Profile

Before You Begin This Course

Before you begin this course, you should have thorough knowledge of SQL,
iSQL*Plus, and working experience developing applications. Required
prerequisites are Introduction to Oracle9i: SQL, or Introduction to Oracle9i for
Experienced SQL Users.

How This Course Is Organized

Oracle9i: PL/SQL Fundamentals is an instructor-led course featuring lectures and
hands-on exercises. Online demonstrations and practice sessions reinforce the
concepts and skills that are introduced.

Oracle9i: PL/SQL Fundamentals Preface - 4

Related Publications

Oracle Publications

Title Part Number

Oracle9i Application Developer’s Guide-Fundamentals A88876-02

Oracle9i Application Developer’s Guide-Large Objects A88879-01

Oracle9i Supplied PL/SQL Packages and Type Reference A89852-02

PL/SQL User’s Guide and Reference A89856-01

Additional Publications

• System release bulletins

• Installation and user’s guides

• read.me files

• International Oracle User’s Group (IOUG) articles

• Oracle Magazine

Oracle9i: PL/SQL Fundamentals Preface - 5

Typographic Conventions
Following are two lists of typographical conventions that are used specifically within text or
within code.

Typographic Conventions Within Text

Convention Object or Term Example

Uppercase Commands, Use the SELECT command to view
functions, information stored in the LAST_NAME
column names, column of the EMPLOYEES table.
table names,
PL/SQL objects,
schemas

Lowercase, Filenames, where: role is the name of the role italic
syntax variables, to be created.
usernames,
passwords

Initial cap Trigger and Assign a When-Validate-Item trigger to
button names the ORD block.

Choose Cancel.

Italic Books, names of For more information on the subject, see
courses and Oracle9i Server SQL Language Reference
manuals, and Manual.
emphasized
words or phrases Do not save changes to the database.

Quotation marks Lesson module This subject is covered in Lesson 3,
titles referenced “Working with Objects.”
within a course

Oracle9i: PL/SQL Fundamentals Preface - 6

Typographic Conventions (continued)

Typographic Conventions Within Code

Convention Object or Term Example

Uppercase Commands, SELECT userid
functions FROM emp;

Lowercase, Syntax variables CREATE ROLE role;
italic

Initial cap Forms triggers Form module: ORD
Trigger level: S_ITEM.QUANTITY
item
Trigger name: When-Validate-Item
. . .

Lowercase Column names, . . .
table names, OG_ACTIVATE_LAYER
filenames, (OG_GET_LAYER

(’prod_pie_layer’))
PL/SQL objects . . .

SELECT last_name
FROM emp;

Bold Text that must DROP USER scott;
be entered by a
user

Curriculum

Map

Oracle9i: PL/SQL Fundamentals 3

Copyright © Oracle Corporation, 2001. All rights reserved.

Languages Curriculum for Oracle9i

Introduction to Oracle9i
for

Experienced SQL Users

inClass

Oracle9i: Advanced PL/SQL
inClass

Oracle9i: SQL for
End Users

inClass

Oracle9i: Program with PL/SQL

inClass

Oracle9i: Develop PL/SQL
Program Units

Oracle9i: PL/SQL
Fundamentals

or

Introduction
to Oracle9i:
SQL Basics

Introduction to
Oracle9i: SQL

inClass

Oracle9i:
Advanced

SQL

Integrated Languages Curriculum

Introduction to Oracle9i: SQL consists of two modules, Introduction to Oracle9i: SQL Basics and
Oracle9i: Advanced SQL. Introduction to Oracle9i: SQL Basics covers creating database structures
and storing, retrieving, and manipulating data in a relational database. Oracle9i: Advanced SQL
covers advanced SELECT statements, Oracle SQL and iSQL*Plus Reporting.

For people who have worked with other relational databases and have knowledge of SQL, another
course, called Introduction to Oracle9i for Experienced SQL Users is offered. This course covers the
SQL statements that are not part of ANSI SQL but are specific to Oracle.

Oracle9i: Program with PL/SQL consists of two modules, Oracle9i: PL/SQL Fundamentals and
Oracle9i: Develop PL/SQL Program Units. Oracle9i: PL/SQL Fundamentals covers PL/SQL basics
including the PL/SQL language structure, flow of execution and interface with SQL. Oracle9i:
Develop PL/SQL Program Units covers creating stored procedures, functions, packages, and triggers
as well as maintaining and debugging PL/SQL program code.

Oracle9i: SQL for End Users is directed towards individuals with little programming background
and covers basic SQL statements. This course is for end users who need to know some basic SQL
programming.

Oracle9i: Advanced PL/SQL is appropriate for individuals who have experience in PL/SQL
programming and covers coding efficiency topics, object-oriented programming, working with
external code, and the advanced features of the Oracle supplied packages.

Oracle9i: PL/SQL Fundamentals 4

Copyright © Oracle Corporation, 2001. All rights reserved.

Languages Curriculum for Oracle9i

Introduction to Oracle9i
for

Experienced SQL Users

inClass

or

Oracle9i: Advanced PL/SQL
inClass

Oracle9i: SQL for
End Users

inClassIntroduction
to Oracle9i:
SQL Basics

Oracle9i: Program with PL/SQL

inClass

Oracle9i: Develop PL/SQL
Program Units

Oracle9i: PL/SQL
Fundamentals

Introduction to
Oracle9i: SQL

inClass

Oracle9i:
Advanced

SQL

Integrated Languages Curriculum

The slide lists various modules and courses that are available in the languages curriculum. The
following table lists the modules and courses with their equivalent TBTs.

Course or Module Equivalent TBT

Introduction to Oracle9i: SQL
Basics

Oracle SQL: Basic SELECT Statements
Oracle SQL: Data Retrieval Techniques
Oracle SQL: DML and DDL

Oracle9i: Advanced SQL Oracle SQL and SQL*Plus: Advanced SELECT Statements
Oracle SQL and SQL*Plus: SQL*Plus and Reporting

Introduction to Oracle9i for
Experienced SQL Users

Oracle SQL Specifics: Retrieving and Formatting Data
Oracle SQL Specifics: Creating and Managing Database Objects

Oracle9i: PL/SQL Fundamentals PL/SQL: Basics

Oracle9i: Develop PL/SQL
Program Units

PL/SQL: Procedures, Functions, and Packages
PL/SQL: Database Programming

Oracle9i: SQL for End Users SQL for End Users: Part 1
SQL for End Users: Part 2

Oracle9i: Advanced PL/SQL Advanced PL/SQL: Implementation and Advanced Features
Advanced PL/SQL: Design Considerations and Object Types

Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of PL/SQL

Oracle9i: PL/SQL Fundamentals I-2

Copyright © Oracle Corporation, 2001. All rights reserved.

Course Objectives

After completing this lesson, you should be able to
do the following:

• Describe the purpose of PL/SQL

• Describe the use of PL/SQL for the developer as
well as the DBA

• Explain the benefits of PL/SQL

Lesson Aim

In this course, you are introduced to the features and benefits of PL/SQL. You learn how to access the
database using PL/SQL.

Oracle9i: PL/SQL Fundamentals I-3

About PL/SQL

Procedural Language/SQL (PL/SQL) is Oracle Corporation’s procedural language extension to SQL, the
standard data access language for relational databases. PL/SQL offers modern software engineering
features such as data encapsulation, exception handling, information hiding, object orientation, and
brings state-of-the-art programming to the Oracle Server and toolset.

PL/SQL incorporates many of the advanced features of programming languages that were designed
during the 1970s and 1980s. It allows the data manipulation and query statements of SQL to be included
in block-structured and procedural units of code, making PL/SQL a powerful transaction processing
language. With PL/SQL, you can use SQL statements to finesse Oracle data, and PL/SQL control
statements to process the data.

Copyright © Oracle Corporation, 2001. All rights reserved.

About PL/SQL

• PL/SQL is the procedural extension to SQL with
design features of programming languages.

• Data manipulation and query statements of SQL
are included within procedural units of code.

Oracle9i: PL/SQL Fundamentals I-4

Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Environment

PL/SQL
block

PL/SQL engine

Oracle server

Procedural
statement
executor

PL/SQL

SQL

SQL statement executor

PL/SQL
block

PL/SQL Environment

PL/SQL is not an Oracle product in its own right; it is a technology used by the Oracle server and by
certain Oracle tools. Blocks of PL/SQL are passed to and processed by a PL/SQL engine, which may
reside within the tool or within the Oracle server. The engine that is used depends on where the PL/SQL
block is being invoked from.

When you submit PL/SQL blocks from a Oracle precompiler such as Pro*C or Pro*Cobol program, user-
exit, iSQL*Plus, or Server Manager, the PL/SQL engine in the Oracle Server processes them. It separates
the SQL statements and sends them individually to the SQL statements executor.

A single transfer is required to send the block from the application to the Oracle Server, thus improving
performance, especially in a client-server network. PL/SQL code can also be stored in the Oracle Server as
subprograms that can be referenced by any number of applications connected to the database.

Oracle9i: PL/SQL Fundamentals I-5

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL

Integration

Application

Oracle serverShared
library

Benefits of PL/SQL

Integration

PL/SQL plays a central role in both the Oracle server (through stored procedures, stored functions,
database triggers, and packages) and Oracle development tools (through Oracle Developer component
triggers).

Oracle Forms Developer, Oracle Reports Developer, and Oracle Graphics Developer applications make
use of shared libraries that hold code (procedures and functions) and can be accessed locally or remotely.

SQL data types can also be used in PL/SQL. Combined with the direct access that SQL provides, these
shared data types integrate PL/SQL with the Oracle server data dictionary. PL/SQL bridges the gap
between convenient access to database technology and the need for procedural programming capabilities.

PL/SQL in Oracle Tools

Many Oracle tools, including Oracle Developer, have their own PL/SQL engine, which is independent of
the engine present in the Oracle Server.

The engine filters out SQL statements and sends them individually to the SQL statement executor in the
Oracle server. It processes the remaining procedural statements in the procedural statement executor,
which is in the PL/SQL engine.

Oracle9i: PL/SQL Fundamentals I-6

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL

Improved performance

Application Other DBMSs

Application
Oracle with

PL/SQL

SQL

SQL
SQL

SQL

SQL
IF...THEN

SQL
ELSE

SQL
END IF;
SQL

Benefits of PL/SQL (continued)

PL/SQL in Oracle Tools (continued)

The procedural statement executor processes data that is local to the application (that is, data already
inside the client environment, rather than in the database). This reduces the work that is sent to the Oracle
server and the number of memory cursors that are required.

Improved Performance

PL/SQL can improve the performance of an application. The benefits differ depending on the execution
environment.

• PL/SQL can be used to group SQL statements together within a single block and to send the
entire block to the server in a single call, thereby reducing networking traffic. Without PL/SQL, the
SQL statements are sent to the Oracle server one at a time. Each SQL statement results in another
call to the Oracle server and higher performance overhead. In a networked environment, the
overhead can become significant. As the slide illustrates, if the application is SQL intensive, you
can use PL/SQL blocks and subprograms to group SQL statements before sending them to the
Oracle server for execution.

• PL/SQL can also operate with Oracle Server application development tools such as Oracle Forms
and Oracle Reports. By adding procedural processing power to these tools, PL/SQL enhances
performance.

Oracle9i: PL/SQL Fundamentals I-7

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL

Modularize program development

DECLARE

BEGIN

END;

EXCEPTION

…
…
…

Benefits of PL/SQL (continued)

Improved Performance (continued)

Note: Procedures and functions that are declared as part of a Oracle Forms or Reports Developer
application are distinct from those stored in the database, although their general structure is the same.
Stored subprograms are database objects and are stored in the data dictionary. They can be accessed by
any number of applications, including Oracle Forms or Reports Developer applications.

You can take advantage of the procedural capabilities of PL/SQL, which are not available in SQL.

PL/SQL Block Structure

Every unit of PL/SQL comprises one or more blocks. These blocks can be entirely separate or nested one
within another. The basic units (procedures, functions, and anonymous blocks) that make up a PL/SQL
program are logical blocks, which can contain any number of nested subblocks. Therefore, one block can
represent a small part of another block, which in turn can be part of the whole unit of code.

Modularized Program Development

• Group logically related statements within blocks.

• Nest subblocks inside larger blocks to build powerful programs.

Oracle9i: PL/SQL Fundamentals I-8

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL

• PL/SQL is portable.

• You can declare variables.

Benefits of PL/SQL (continued)

Modularized Program Development (continued)

• Break down a complex problem into a set of manageable, well-defined, logical modules and
implement the modules with blocks.

• Place reusable PL/SQL code in libraries to be shared between Oracle Forms and Oracle Reports
applications or store it in an Oracle server to make it accessible to any application that can interact
with an Oracle database.

Portability

• Because PL/SQL is native to the Oracle server, you can move programs to any host environment
(operating system or platform) that supports the Oracle server and PL/SQL. In other words,
PL/SQL programs can run anywhere the Oracle server can run; you do not need to tailor them to
each new environment.

• You can also move code between the Oracle server and your application. You can write portable
program packages and create libraries that can be reused in different environments.

Oracle9i: PL/SQL Fundamentals I-9

Benefits of PL/SQL (continued)

Procedural Language Control Structures:

Procedural Language Control Structures allow you to do the following:

• Execute a sequence of statements conditionally

• Execute a sequence of statements iteratively in a loop

• Process individually the rows returned by a multiple-row query with an explicit cursor

Errors:

The Error handling functionality in PL/SQL allows you to do the following:

• Process Oracle server errors with exception-handling routines

• Declare user-defined error conditions and process them with exception-handling routines

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL

• You can program with procedural language
control structures.

• PL/SQL can handle errors.

Oracle9i: PL/SQL Fundamentals I-10

Summary

PL/SQL is a language that has programming features that serve as an extension to SQL. It provides you
with the ability to control the flow of constructs, and declare and use variables. PL/SQL applications can
run on any platform or operating system on which Oracle runs.

Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

• PL/SQL is an extension to SQL.

• Blocks of PL/SQL code are passed to and
processed by a PL/SQL engine.

• Benefits of PL/SQL:

– Integration

– Improved performance

– Portability

– Modularity of program development

Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Variables

Oracle9i: PL/SQL Fundamentals 1-2

Copyright © Oracle Corporation, 2001. All rights reserved.1-2

Objectives

After completing this lesson, you should be able to
do the following:

• Recognize the basic PL/SQL block and its sections

• Describe the significance of variables in PL/SQL

• Declare PL/SQL variables

• Execute a PL/SQL block

Lesson Aim

This lesson presents the basic rules and structure for writing and executing PL/SQL blocks of code.
It also shows you how to declare variables and assign data types to them.

Oracle9i: PL/SQL Fundamentals 1-3

Copyright © Oracle Corporation, 2001. All rights reserved.1-3

PL/SQL Block Structure

DECLARE (Optional)

Variables, cursors, user-defined exceptions

BEGIN (Mandatory)

– SQL statements

– PL/SQL statements

EXCEPTION (Optional)

Actions to perform when errors occur

END; (Mandatory)

DECLARE

BEGIN

END;

EXCEPTION

…

…
…

PL/SQL Block Structure

PL/SQL is a block-structured language, meaning that programs can be divided into logical blocks. A
PL/SQL block consists of up to three sections: declarative (optional), executable (required), and
exception handling (optional). The following table describes the three sections:

Section Description Inclusion

Declarative Contains all variables, constants, cursors, and
user-defined exceptions that are referenced in the
executable and declarative sections

Optional

Executable Contains SQL statements to manipulate data in
the database and PL/SQL statements to
manipulate data in the block

Mandatory

Exception
handling

Specifies the actions to perform when errors and
abnormal conditions arise in the executable
section

Optional

Oracle9i: PL/SQL Fundamentals 1-4

Copyright © Oracle Corporation, 2001. All rights reserved.1-4

Executing Statements and PL/SQL Blocks
DECLARE

v_variable VARCHAR2(5);
BEGIN

SELECT column_name
INTO v_variable
FROM table_name;

EXCEPTION
WHEN exception_name THEN
...

END;

DECLARE

BEGIN

END;

EXCEPTION

…

…
…

Executing Statements and PL/SQL Blocks

• Place a semicolon (;) at the end of a SQL statement or PL/SQL control statement.

• When the block is executed successfully, without unhandled errors or compile errors, the
message output should be as follows:

• Section keywords DECLARE, BEGIN, and EXCEPTION are not followed by semicolons.

• END and all other PL/SQL statements require a semicolon to terminate the statement.

• You can string statements together on the same line, but this method is not recommended for
clarity or editing.

Note: In PL/SQL, an error is called an exception.

With modularity you can break an application down into manageable, well-defined modules.
Through successive refinement, you can reduce a complex problem to a set of simple problems that
have easy-to-implement solutions. PL/SQL meets this need with program units, which include
blocks, subprograms, and packages.

Oracle9i: PL/SQL Fundamentals 1-5

Copyright © Oracle Corporation, 2001. All rights reserved.1-5

Block Types

Anonymous Procedure Function

[DECLARE]

BEGIN
--statements

[EXCEPTION]

END;

PROCEDURE name
IS

BEGIN
--statements

[EXCEPTION]

END;

FUNCTION name
RETURN datatype
IS
BEGIN

--statements
RETURN value;

[EXCEPTION]

END;

Block Types

A PL/SQL program comprises one or more blocks. These blocks can be entirely separate or nested
one within another. The basic units (procedures and functions, also known as subprograms, and
anonymous blocks) that make up a PL/SQL program are logical blocks, which can contain any
number of nested subblocks. Therefore, one block can represent a small part of another block, which
in turn can be part of the whole unit of code.

Anonymous Blocks

Anonymous blocks are unnamed blocks. They are declared at the point in an application where they
are to be executed and are passed to the PL/SQL engine for execution at run time. You can embed
an anonymous block within a precompiler program and within iSQL*Plus or Server Manager.
Triggers in Oracle Developer components consist of such blocks.

Subprograms

Subprograms are named PL/SQL blocks that can accept parameters and can be invoked. You can
declare them either as procedures or as functions. Generally use a procedure to perform an action
and a function to compute a value.

You can store subprograms at the server or application level. Using Oracle Developer components
(Forms, Reports, and Graphics), you can declare procedures and functions as part of the application
(a form or report) and call them from other procedures, functions, and triggers (see next page) within
the same application whenever necessary.

Note: A function is similar to a procedure, except that a function must return a value.

Oracle9i: PL/SQL Fundamentals 1-6

Copyright © Oracle Corporation, 2001. All rights reserved.1-6

Program Constructs

DECLARE

BEGIN

END;

EXCEPTION

…

…
…

Tools Constructs

Anonymous blocks
Application procedures or

functions
Application packages

Application triggers

Object types

Database Server
Constructs

Anonymous blocks
Stored procedures or

functions
Stored packages

Database triggers

Object types

Program Constructs

The following table outlines a variety of different PL/SQL program constructs that use the basic
PL/SQL block. The program constructs are available based on the environment in which they are
executed.

Program
Construct

Description

Availability

Anonymous blocks Unnamed PL/SQL blocks that are embedded within an
application or are issued interactively

All PL/SQL environments

Application
procedures or
functions

Named PL/SQL blocks stored in an Oracle Forms
Developer application or shared library; can accept
parameters and can be invoked repeatedly by name

Oracle Developer tools components,
for example, Oracle Forms
Developer, Oracle Reports

Stored procedures
or functions

Named PL/SQL blocks stored in the Oracle server; can
accept parameters and can be invoked repeatedly by
name

Oracle server

Packages
(Application or
Stored)

Named PL/SQL modules that group related
procedures, functions, and identifiers

Oracle server and Oracle Developer
tools components, for example,
Oracle Forms Developer

Database triggers PL/SQL blocks that are associated with a database
table and fired automatically when triggered by DML
statements

Oracle server

Application
triggers

PL/SQL blocks that are associated with an application
event and fired automatically

Oracle Developer tools components,
for example, Oracle Forms Developer

Object types User-defined composite data types that encapsulate a
data structure along with the functions and procedures
needed to manipulate the data

Oracle server and Oracle Developer
tools

Oracle9i: PL/SQL Fundamentals 1-7

Copyright © Oracle Corporation, 2001. All rights reserved.1-7

Use of Variables

Variables can be used for:

• Temporary storage of data

• Manipulation of stored values

• Reusability

• Ease of maintenance

Use of Variables

With PL/SQL you can declare variables and then use them in SQL and procedural statements
anywhere that an expression can be used. Variables can be used for the following:

• Temporary storage of data: Data can be temporarily stored in one or more variables for use
when validating data input and for processing later in the data flow process.

• Manipulation of stored values: Variables can be used for calculations and other data
manipulations without accessing the database.

• Reusability: After they are declared, variables can be used repeatedly in an application simply
by referencing them in other statements, including other declarative statements.

• Ease of maintenance: When using %TYPE and %ROWTYPE (more information on %ROWTYPE
is covered in a subsequent lesson), you declare variables, basing the declarations on the
definitions of database columns. If an underlying definition changes, the variable declaration
changes accordingly at run time. This provides data independence, reduces maintenance costs,
and allows programs to adapt as the database changes to meet new business needs. More
information on %TYPE is covered later in this lesson.

Oracle9i: PL/SQL Fundamentals 1-8

Copyright © Oracle Corporation, 2001. All rights reserved.1-8

Handling Variables in PL/SQL

• Declare and initialize variables in the declaration
section.

• Assign new values to variables in the executable
section.

• Pass values into PL/SQL blocks through
parameters.

• View results through output variables.

Handling Variables in PL/SQL

Declare and Initialize Variables in the Declaration Section

You can declare variables in the declarative part of any PL/SQL block, subprogram, or package.
Declarations allocate storage space for a value, specify its data type, and name the storage location
so that you can reference it. Declarations can also assign an initial value and impose the NOT NULL
constraint on the variable. Forward references are not allowed. You must declare a variable before
referencing it in other statements, including other declarative statements.

Assign New Values to Variables in the Executable Section

In the executable section, the existing value of the variable is replaced with the new value that is
assigned to the variable.

Pass Values Into PL/SQL Subprograms Through Parameters

There are three parameter modes, IN (the default), OUT, and IN OUT. Use the IN parameter to pass
values to the subprogram being called. Use the OUT parameter to return values to the caller of a
subprogram. And use the IN OUT parameter to pass initial values to the subprogram being called
and to return updated values to the caller. We pass values into anonymous block via iSQL*PLUS
substitution variables.

Note: Viewing the results from a PL/SQL block through output variables is discussed later in the
lesson.

Oracle9i: PL/SQL Fundamentals 1-9

Copyright © Oracle Corporation, 2001. All rights reserved.1-9

Types of Variables

• PL/SQL variables:
– Scalar

– Composite

– Reference
– LOB (large objects)

• Non-PL/SQL variables: Bind and host variables

Types of Variables

All PL/SQL variables have a data type, which specifies a storage format, constraints, and valid range
of values. PL/SQL supports four data type categories—scalar, composite, reference, and LOB (large
object)—that you can use for declaring variables, constants, and pointers.

• Scalar data types hold a single value. The main data types are those that correspond to column
types in Oracle server tables; PL/SQL also supports Boolean variables.

• Composite data types, such as records, allow groups of fields to be defined and manipulated in
PL/SQL blocks.

• Reference data types hold values, called pointers, that designate other program items.
Reference data types are not covered in this course.

• LOB data types hold values, called locators, that specify the location of large objects (such as
graphic images) that are stored out of line. LOB data types are discussed in detail later in this
course.

Non-PL/SQL variables include host language variables declared in precompiler programs, screen
fields in Forms applications, and iSQL*Plus host variables.

For more information on LOBs, see PL/SQL User’s Guide and Reference, “Fundamentals.”

Oracle9i: PL/SQL Fundamentals 1-10

Copyright © Oracle Corporation, 2001. All rights reserved.1-10

Using iSQL*Plus Variables Within PL/SQL
Blocks

• PL/SQL does not have input or output capability of
its own.

• You can reference substitution variables within a
PL/SQL block with a preceding ampersand.

• iSQL*Plus host (or “bind”) variables can be used
to pass run time values out of the PL/SQL block
back to the iSQL*Plus environment.

Using iSQL*Plus Variables Within PL/SQL Blocks

PL/SQL does not have input or output capability of its own. You must rely on the environment in
which PL/SQL is executing to pass values into and out of a PL/SQL block.

In the iSQL*Plus environment, iSQL*Plus substitution variables can be used to pass run time values
into a PL/SQL block. You can reference substitution variables within a PL/SQL block with a
preceding ampersand in the same manner as you reference iSQL*Plus substitution variables in a
SQL statement. The text values are substituted into the PL/SQL block before the PL/SQL block is
executed. Therefore you cannot substitute different values for the substitution variables by using a
loop. Only one value will replace the substitution variable.

iSQL*Plus host variables can be used to pass run-time values out of the PL/SQL block back to the
iSQL*Plus environment. You can reference host variables in a PL/SQL block with a preceding
colon. Bind variables are discussed in further detail later in this lesson.

Oracle9i: PL/SQL Fundamentals 1-11

Copyright © Oracle Corporation, 2001. All rights reserved.1-11

TRUE

Types of Variables

25-JAN-01

Atlanta

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nation,

conceived in LIBERTY, and dedicated

to the proposition that all men

are created equal.”
256120.08

Types of Variables

The slide illustrates the following variable data types:

• TRUE represents a Boolean value.

• 25-JAN-01 represents a DATE.

• The photograph represents a BLOB.

• The text of a speech represents a LONG.

• 256120.08 represents a NUMBER data type with precision and scale.

• The movie represents a BFILE.

• The city name, Atlanta, represents a VARCHAR2.

Oracle9i: PL/SQL Fundamentals 1-12

Copyright © Oracle Corporation, 2001. All rights reserved.1-12

Declaring PL/SQL Variables

Syntax:

Examples:

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

DECLARE
v_hiredate DATE;
v_deptno NUMBER(2) NOT NULL := 10;
v_location VARCHAR2(13) := ’Atlanta’;
c_comm CONSTANT NUMBER := 1400;

Declaring PL/SQL Variables

You must declare all PL/SQL identifiers in the declaration section before referencing them in the
PL/SQL block. You have the option to assign an initial value to a variable. You do not need to
assign a value to a variable in order to declare it. If you refer to other variables in a declaration, you
must be sure to declare them separately in a previous statement.

In the syntax:

identifier is the name of the variable.

CONSTANT constrains the variable so that its value cannot change; constants
must be initialized.

data type is a scalar, composite, reference, or LOB data type. (This course
covers only scalar, composite, and LOB data types.)

NOT NULL constrains the variable so that it must contain a value. (NOT NULL
variables must be initialized.)

expr is any PL/SQL expression that can be a literal expression, another
variable, or an expression involving operators and functions.

Oracle9i: PL/SQL Fundamentals 1-13

Copyright © Oracle Corporation, 2001. All rights reserved.1-13

Guidelines for Declaring PL/SQL Variables

• Follow naming conventions.
• Initialize variables designated as NOT NULL and

CONSTANT.

• Declare one identifier per line.

• Initialize identifiers by using the assignment
operator (:=) or the DEFAULT reserved word.

identifier := expr;

Guidelines for Declaring PL/SQL Variables

Here are some guidelines to follow while declaring PL/SQL variables:

• Name the identifier according to the same rules used for SQL objects.

• You can use naming conventions—for example, v_name to represent a variable and c_name to
represent a constant variable.

• If you use the NOT NULL constraint, you must assign a value.

• Declaring only one identifier per line makes code easier to read and maintain.

• In constant declarations, the keyword CONSTANT must precede the type specifier. The
following declaration names a constant of NUMBER subtype REAL and assigns the value of
50000 to the constant. A constant must be initialized in its declaration; otherwise, you get a
compilation error when the declaration is elaborated (compiled).

v_sal CONSTANT REAL := 50000.00;

• Initialize the variable to an expression with the assignment operator (:=) or, equivalently, with
the DEFAULT reserved word. If you do not assign an initial value, the new variable contains
NULL by default until you assign a value later. To assign or reassign a value to a variable, you
write a PL/SQL assignment statement. You must explicitly name the variable to receive the
new value to the left of the assignment operator (:=). It is good programming practice to
initialize all variables.

Oracle9i: PL/SQL Fundamentals 1-14

Copyright © Oracle Corporation, 2001. All rights reserved.1-14

Naming Rules

• Two variables can have the same name, provided they
are in different blocks.

• The variable name (identifier) should not be the same
as the name of table columns used in the block.

DECLARE
employee_id NUMBER(6);

BEGIN
SELECT employee_id
INTO employee_id
FROM employees
WHERE last_name = ’Kochhar’;

END;
/

Adopt a naming
convention for

PL/SQL identifiers:
for example,

v_employee_id

Naming Rules

Two objects can have the same name, provided that they are defined in different blocks. Where they
coexist, only the object declared in the current block can be used.

You should not choose the same name (identifier) for a variable as the name of table columns used
in the block. If PL/SQL variables occur in SQL statements and have the same name as a column, the
Oracle server assumes that it is the column that is being referenced. Although the example code in
the slide works, code that is written using the same name for a database table and variable name is
not easy to read or maintain.

Consider adopting a naming convention for various objects that are declared in the DECLARE
section of the PL/SQL block. Using v_ as a prefix representing variable avoids naming conflicts
with database objects.

DECLARE

v_hire_date date;

BEGIN

...

Note: The names of the variables must not be longer than 30 characters. The first character must be
a letter; the remaining characters can be letters, numbers, or special symbols.

Oracle9i: PL/SQL Fundamentals 1-15

Copyright © Oracle Corporation, 2001. All rights reserved.1-15

Variable Initialization and Keywords

• Assignment operator (:=)

• DEFAULT keyword

• NOT NULL constraint

Syntax:

Examples:

identifier := expr;

v_hiredate := ’01-JAN-2001’;

v_ename := ’Maduro’;

Variable Initialization and Keywords
In the syntax:

identifier is the name of the scalar variable.

expr can be a variable, literal, or function call, but not a database column.

The variable value assignment examples are defined as follows:
• Set the identifier V_HIREDATE to a value of 01-JAN-2001.

• Store the name “Maduro” in the V_ENAME identifier.

Variables are initialized every time a block or subprogram is entered. By default, variables are
initialized to NULL. Unless you explicitly initialize a variable, its value is undefined.

Use the assignment operator (:=) for variables that have no typical value.
v_hire_date := ’15-SEP-1999’

Note: This four-digit value for year, YYYY, assignment is possible only in Oracle8i and later.
Previous versions may require the use of the TO_DATE function.

DEFAULT: You can use the DEFAULT keyword instead of the assignment operator to initialize
variables. Use DEFAULT for variables that have a typical value.

v_mgr NUMBER(6) DEFAULT 100;

NOT NULL: Impose the NOT NULL constraint when the variable must contain a value.

You cannot assign nulls to a variable defined as NOT NULL. The NOT NULL constraint must be
followed by an initialization clause.

v_city VARCHAR2(30) NOT NULL := ’Oxford’

Oracle9i: PL/SQL Fundamentals 1-16

Variable Initialization and Keywords (continued)

Note: String literals must be enclosed in single quotation marks. For example, ’Hello, world’.
If there is a single quotation mark in the string, use a single quotation mark twice—for example, to
insert a value FISHERMAN’S DRIVE, the string would be ’FISHERMAN’’S DRIVE’.

Another way to assign values to variables is to select or fetch database values into it. The following
example computes a 10% bonus for the employee with the EMPLOYEE_ID 176 and assigns the
computed value to the v_bonus variable. This is done using the INTO clause.

DECLARE

v_bonus NUMBER(8,2);

BEGIN

SELECT salary * 0.10

INTO v_bonus

FROM employees

WHERE employee_id = 176;

END;

/

Then you can use the variable v_bonus in another computation or insert its value into a database
table.

Note: To assign a value into a variable from the database, use a SELECT or FETCH statement. The
FETCH statement is covered later in this course.

Oracle9i: PL/SQL Fundamentals 1-17

Copyright © Oracle Corporation, 2001. All rights reserved.1-17

Scalar Data Types

• Hold a single value

• Have no internal components

25-OCT-99

Atlanta

“Four score and seven years

ago our fathers brought

forth upon this continent, a

new nation, conceived in

LIBERTY, and dedicated to

the proposition that all men

are created equal.”

TRUE

256120.08

Scalar Data Types

Every constant, variable, and parameter has a data type (or type), which specifies a storage format,
constraints, and valid range of values. PL/SQL provides a variety of predefined data types. For
instance, you can choose from integer, floating point, character, Boolean, date, collection, reference,
and LOB types. In addition, This chapter covers the basic types that are used frequently in PL/SQL
programs. Later chapters cover the more specialized types.

A scalar data type holds a single value and has no internal components. Scalar data types can be
classified into four categories: number, character, date, and Boolean. Character and number data
types have subtypes that associate a base type to a constraint. For example, INTEGER and
POSITIVE are subtypes of the NUMBER base type.

For more information and the complete list of scalar data types, refer to PL/SQL User’s Guide and
Reference, “Fundamentals.”

Oracle9i: PL/SQL Fundamentals 1-18

Copyright © Oracle Corporation, 2001. All rights reserved.1-18

Base Scalar Data Types

• CHAR [(maximum_length)]

• VARCHAR2 (maximum_length)

• LONG

• LONG RAW

• NUMBER [(precision, scale)]

• BINARY_INTEGER

• PLS_INTEGER

• BOOLEAN

Base Scalar Data Types

Data Type Description

CHAR
[(maximum_length)]

Base type for fixed-length character data up to 32,767 bytes. If you do
not specify a maximum_length, the default length is set to 1.

VARCHAR2
(maximum_length)

Base type for variable-length character data up to 32,767 bytes. There
is no default size for VARCHAR2 variables and constants.

LONG Base type for variable-length character data up to 32,760 bytes. Use
the LONG data type to store variable-length character strings. You can
insert any LONG value into a LONG database column because the
maximum width of a LONG column is 2**31 bytes. However, you
cannot retrieve a value
longer than 32760 bytes from a LONG column into a LONG variable.

LONG RAW Base type for binary data and byte strings up to 32,760 bytes. LONG
RAW data is not interpreted by PL/SQL.

NUMBER
[(precision, scale)]

Number having precision p and scale s. The precision p can range
from 1 to 38. The scale s can range from -84 to 127.

Oracle9i: PL/SQL Fundamentals 1-19

Base Scalar Data types (continued)

Data Type Description

BINARY_INTEGER Base type for integers between -2,147,483,647 and 2,147,483,647.

PLS_INTEGER Base type for signed integers between -2,147,483,647 and
2,147,483,647. PLS_INTEGER values require less storage and are
faster than NUMBER and BINARY_INTEGER values.

BOOLEAN Base type that stores one of three possible values used for logical
calculations: TRUE, FALSE, or NULL.

Oracle9i: PL/SQL Fundamentals 1-20

Copyright © Oracle Corporation, 2001. All rights reserved.1-20

Base Scalar Data Types

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

Base Scalar Data Types (continued)

Data Type Description

DATE Base type for dates and times. DATE values include the time of day in seconds
since midnight. The range for dates is between 4712 B.C. and 9999 A.D.

TIMESTAMP The TIMESTAMP data type, which extends the DATE data type, stores the year,
month, day, hour, minute, and second. The syntax is:
TIMESTAMP[(precision)]
where the optional parameter precision specifies the number of digits in the
fractional part of the seconds field. You cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range
 0 .. 9. The default is 6.

TIMESTAMP WITH
TIME ZONE

The TIMESTAMP WITH TIME ZONE data type, which extends the
TIMESTAMP data type, includes a time-zone displacement. The time-zone
displacement is the difference (in hours and minutes) between local time and
Coordinated Universal Time (UTC), formerly known as Greenwich Mean Time.
The syntax is:
TIMESTAMP[(precision)] WITH TIME ZONE
where the optional parameter precision specifies the number of digits in the
fractional part of the seconds field. You cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range 0 ..
9. The default is 6.

Oracle9i: PL/SQL Fundamentals 1-21

Base Scalar Data Types (continued)

Data Type Description

TIMESTAMP WITH
LOCAL TIME ZONE

The TIMESTAMP WITH LOCAL TIME ZONE data type, which extends
the TIMESTAMP data type, includes a time-zone displacement. The time-
zone displacement is the difference (in hours and minutes) between local
time and Coordinated Universal Time (UTC)—formerly Greenwich Mean
Time. The syntax is:
TIMESTAMP[(precision)] WITH LOCAL TIME ZONE

where the optional parameter precision specifies the number of digits in the
fractional part of the seconds field. You cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range 0
.. 9. The default is 6.
This data type differs from TIMESTAMP WITH TIME ZONE in that when
you insert a value into a database column, the value is normalized to the
database time zone, and the time-zone displacement is not stored in the
column. When you retrieve the value, Oracle returns the value in your local
session time zone.

INTERVAL YEAR
TO MONTH

You use the INTERVAL YEAR TO MONTH data type to store and
manipulate intervals of years and months. The syntax is:
INTERVAL YEAR[(precision)] TO MONTH
where years_precision specifies the number of digits in the years field.
You cannot use a symbolic constant or variable to specify the precision; you
must use an integer literal in the range 0 .. 4. The default is 2.

INTERVAL DAY TO
SECOND

You use the INTERVAL DAY TO SECOND data type to store and
manipulate intervals of days, hours, minutes, and seconds. The syntax is:
INTERVAL DAY[(precision1)] TO SECOND[(precision2)]

where precision1 and precision2 specify the number of digits in the
days field and seconds field, respectively. In both cases, you cannot use a
symbolic constant or variable to specify the precision; you must use an
integer literal in the range 0 .. 9.The defaults are 2 and 6, respectively.

Oracle9i: PL/SQL Fundamentals 1-22

Copyright © Oracle Corporation, 2001. All rights reserved.1-22

Scalar Variable Declarations

DECLARE

v_job VARCHAR2(9);

v_count BINARY_INTEGER := 0;

v_total_sal NUMBER(9,2) := 0;

v_orderdate DATE := SYSDATE + 7;

c_tax_rate CONSTANT NUMBER(3,2) := 8.25;

v_valid BOOLEAN NOT NULL := TRUE;

...

Examples:

Declaring Scalar Variables

The examples of variable declaration shown on the slide are defined as follows:

• v_job: variable to store an employee job title

• v_count: variable to count the iterations of a loop and initialized to 0

• v_total_sal: variable to accumulate the total salary for a department and initialized to 0

• v_orderdate: variable to store the ship date of an order and initialize to one week from
today

• c_tax_rate: a constant variable for the tax rate, which never changes throughout the
PL/SQL block

• v_valid: flag to indicate whether a piece of data is valid or invalid and initialized to TRUE

Oracle9i: PL/SQL Fundamentals 1-23

Copyright © Oracle Corporation, 2001. All rights reserved.1-23

The %TYPE Attribute

• Declare a variable according to:
– A database column definition

– Another previously declared variable

• Prefix %TYPE with:

– The database table and column

– The previously declared variable name

The %TYPE Attribute

When you declare PL/SQL variables to hold column values, you must ensure that the variable is of
the correct data type and precision. If it is not, a PL/SQL error will occur during execution.

Rather than hard coding the data type and precision of a variable, you can use the %TYPE attribute to
declare a variable according to another previously declared variable or database column. The %TYPE
attribute is most often used when the value stored in the variable will be derived from a table in the
database. To use the attribute in place of the data type that is required in the variable declaration,
prefix it with the database table and column name. If referring to a previously declared variable,
prefix the variable name to the attribute.

PL/SQL determines the data type and size of the variable when the block is compiled so that such
variables are always compatible with the column that is used to populate it. This is a definite
advantage for writing and maintaining code, because there is no need to be concerned with column
data type changes made at the database level. You can also declare a variable according to another
previously declared variable by prefixing the variable name to the attribute.

Oracle9i: PL/SQL Fundamentals 1-24

Copyright © Oracle Corporation, 2001. All rights reserved.1-24

Declaring Variables
with the %TYPE Attribute

Examples:

...
v_name employees.last_name%TYPE;
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE := 10;

...

identifier Table.column_name%TYPE;

Syntax:

Declaring Variables with the %TYPE Attribute

Declare variables to store the last name of an employee. The variable v_name is defined to be of the
same data type as the LAST_NAME column in the EMPLOYEES table. %TYPE provides the data type
of a database column:

...
v_name employees.last_name%TYPE;
...

Declare variables to store the balance of a bank account, as well as the minimum balance, which
starts out as 10. The variable v_min_balance is defined to be of the same data type as the
variable v_balance. %TYPE provides the data type of a variable:
...
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE := 10;
...

A NOT NULL database column constraint does not apply to variables that are declared using
%TYPE. Therefore, if you declare a variable using the %TYPE attribute that uses a database column
defined as NOT NULL, you can assign the NULL value to the variable.

Oracle9i: PL/SQL Fundamentals 1-25

Copyright © Oracle Corporation, 2001. All rights reserved.1-25

Declaring Boolean Variables

• Only the values TRUE, FALSE, and NULL can be
assigned to a Boolean variable.

• The variables are compared by the logical
operators AND, OR, and NOT.

• The variables always yield TRUE, FALSE, or NULL.

• Arithmetic, character, and date expressions can be
used to return a Boolean value.

Declaring Boolean Variables

With PL/SQL you can compare variables in both SQL and procedural statements. These
comparisons, called Boolean expressions, consist of simple or complex expressions separated by
relational operators. In a SQL statement, you can use Boolean expressions to specify the rows in a
table that are affected by the statement. In a procedural statement, Boolean expressions are the basis
for conditional control. NULL stands for a missing, inapplicable, or unknown value.

Examples

v_sal1 := 50000;
v_sal2 := 60000;

The following expression yields TRUE:

v_sal1 < v_sal2

Declare and initialize a Boolean variable:
DECLARE

v_flag BOOLEAN := FALSE;
BEGIN

v_flag := TRUE;
END;

Oracle9i: PL/SQL Fundamentals 1-26

Copyright © Oracle Corporation, 2001. All rights reserved.1-26

1 5000

2 2345

3 12

4 3456

1 SMITH

2 JONES

3 NANCY

4 TIM

PL/SQL table structure PL/SQL table structure

BINARY_INTEGER

VARCHAR2

BINARY_INTEGER

NUMBER

Composite Data Types

TRUE 23-DEC-98 ATLANTA

Composite Data Types

A scalar type has no internal components. A composite type has internal components that can be
manipulated individually. Composite data types (also known as collections) are of TABLE,
RECORD, NESTED TABLE, and VARRAY types. Use the RECORD data type to treat related but
dissimilar data as a logical unit. Use the TABLE data type to reference and manipulate collections of
data as a whole object. Both RECORD and TABLE data types are covered in detail in a subsequent
lesson. NESTED TABLE and VARRAY data types are covered in the Advanced PL/SQL course.

For more information, see PL/SQL User’s Guide and Reference, “Collections and Records.”

Oracle9i: PL/SQL Fundamentals 1-27

Copyright © Oracle Corporation, 2001. All rights reserved.1-27

LOB Data Type Variables

Book
(CLOB)

Photo
(BLOB)

Movie
(BFILE)

NCLOB

LOB Data Type Variables

With the LOB (large object) data types you can store blocks of unstructured data (such as text,
graphic images, video clips, and sound wave forms) up to 4 gigabytes in size. LOB data types allow
efficient, random, piecewise access to the data and can be attributes of an object type. LOBs also
support random access to data.

• The CLOB (character large object) data type is used to store large blocks of single-byte
character data in the database in line (inside the row) or out of line (outside the row).

• The BLOB (binary large object) data type is used to store large binary objects in the database
in line (inside the row) or out of line (outside the row).

• The BFILE (binary file) data type is used to store large binary objects in operating system
files outside the database.

• The NCLOB (national language character large object) data type is used to store large blocks
of single-byte or fixed-width multibyte NCHAR unicode data in the database, in line or out of
line.

Oracle9i: PL/SQL Fundamentals 1-28

Copyright © Oracle Corporation, 2001. All rights reserved.1-28

Bind Variables

Server

O/S
Bind variable

Bind Variables

A bind variable is a variable that you declare in a host environment. Bind variables can be used to
pass
run-time values, either number or character, into or out of one or more PL/SQL programs. The
PL/SQL programs use bind variables as they would use any other variable. You can reference
variables declared in the host or calling environment in PL/SQL statements, unless the statement is
in a procedure, function, or package. This includes host language variables declared in precompiler
programs, screen fields in Oracle Developer Forms applications, and iSQL*Plus bind variables.

Creating Bind Variables
To declare a bind variable in the iSQL*Plus environment, use the command VARIABLE. For
example, you declare a variable of type NUMBER and VARCHAR2 as follows:

VARIABLE return_code NUMBER

VARIABLE return_msg VARCHAR2(30)

Both SQL and iSQL*Plus can reference the bind variable, and iSQL*Plus can display its value
through the iSQL*Plus PRINT command.

Oracle9i: PL/SQL Fundamentals 1-29

Displaying Bind Variables
To display the current value of bind variables in the iSQL*Plus environment, use the PRINT
command. However, PRINT cannot be used inside a PL/SQL block because it is an iSQL*Plus
command. The following example illustrates a PRINT command:

VARIABLE g_n NUMBER

...

PRINT g_n

You can reference host variables in PL/SQL programs. These variables should be preceded by a
colon.

VARIABLE RESULT NUMBER

An example of using a host variable in a PL/SQL block:

BEGIN
SELECT (SALARY*12) + NVL(COMMISSION_PCT,0) INTO :RESULT
FROM employees WHERE employee_id = 144;

END;

/

PRINT RESULT

Oracle9i: PL/SQL Fundamentals 1-30

Copyright © Oracle Corporation, 2001. All rights reserved.1-30

Using Bind Variables

To reference a bind variable in PL/SQL, you must
prefix its name with a colon (:).

Example:

VARIABLE g_salary NUMBER

BEGIN
SELECT salary
INTO :g_salary
FROM employees
WHERE employee_id = 178;

END;
/
PRINT g_salary

Printing Bind Variables
In iSQL*Plus you can display the value of the bind variable using the PRINT command.

Oracle9i: PL/SQL Fundamentals 1-31

Copyright © Oracle Corporation, 2001. All rights reserved.1-31

Referencing Non-PL/SQL Variables

Store the annual salary into a iSQL*Plus host
variable.

• Reference non-PL/SQL variables as host
variables.

• Prefix the references with a colon (:).

:g_monthly_sal := v_sal / 12;

Referencing Non-PL/SQL Variables

To reference host variables, you must prefix the references with a colon (:) to distinguish them from
declared PL/SQL variables.

Example

This example computes the monthly salary, based upon the annual salary supplied by the user. This
script contains both iSQL*Plus commands as well as a complete PL/SQL block.

VARIABLE g_monthly_sal NUMBER
DEFINE p_annual_sal = 50000

SET VERIFY OFF
DECLARE

v_sal NUMBER(9,2) := &p_annual_sal;
BEGIN

:g_monthly_sal := v_sal/12;
END;
/
PRINT g_monthly_sal

The DEFINE command specifies a user variable and assigns it a CHAR value. Even though you enter
the number 50000, iSQL*Plus assigns a CHAR value to p_annual_sal consisting of the characters,
5,0,0,0 and 0.

Oracle9i: PL/SQL Fundamentals 1-32

Copyright © Oracle Corporation, 2001. All rights reserved.1-32

DBMS_OUTPUT.PUT_LINE

• An Oracle-supplied packaged procedure

• An alternative for displaying data from a PL/SQL block

• Must be enabled in iSQL*Plus with
SET SERVEROUTPUT ON

DECLARE
v_sal NUMBER(9,2) := &p_annual_sal;

BEGIN
v_sal := v_sal/12;
DBMS_OUTPUT.PUT_LINE (’The monthly salary is ’ ||

TO_CHAR(v_sal));
END;
/

SET SERVEROUTPUT ON

DEFINE p_annual_sal = 60000

DBMS_OUTPUT.PUT_LINE

You have seen that you can declare a host variable, reference it in a PL/SQL block, and then display
its contents in iSQL*Plus using the PRINT command. Another option for displaying information
from a PL/SQL block is DBMS_OUTPUT.PUT_LINE. DBMS_OUTPUT is an Oracle-supplied
package, and PUT_LINE is a procedure within that package.

Within a PL/SQL block, reference DBMS_OUTPUT.PUT_LINE and, in parentheses, specify the
string that you want to print to the screen. The package must first be enabled in your iSQL*Plus
session. To do this, execute the iSQL*Plus SET SERVEROUTPUT ON command.

The example on the slide computes the monthly salary and prints it to the screen, using
DBMS_OUTPUT.PUT_LINE. The output is shown below:

Oracle9i: PL/SQL Fundamentals 1-33

Copyright © Oracle Corporation, 2001. All rights reserved.1-33

Summary

In this lesson you should have learned the following:

• PL/SQL blocks are composed of the following
sections:
– Declarative (optional)

– Executable (required)

– Exception handling (optional)

• A PL/SQL block can be an anonymous
block, procedure, or function.

DECLARE

BEGIN

END;

EXCEPTION…
…
…

Summary

A PL/SQL block is a basic, unnamed unit of a PL/SQL program. It consists of a set of SQL or
PL/SQL statements and it performs a single logical function. The declarative part is the first part of a
PL/SQL block and is used for declaring objects such as variables, constants, cursors, and definitions
of error situations called exceptions. The executable part is the mandatory part of a PL/SQL block,
and contains SQL and PL/SQL statements for querying and manipulating data. The exception-
handling part is embedded inside the executable part of a block and is placed at the end of the
executable part.

An anonymous PL/SQL block is the basic, unnamed unit of a PL/SQL program. Procedures and
functions can be compiled separately and stored permanently in an Oracle database, ready to be
executed.

Oracle9i: PL/SQL Fundamentals 1-34

Copyright © Oracle Corporation, 2001. All rights reserved.1-34

Summary

In this lesson you should have learned the following:

• PL/SQL identifiers:
– Are defined in the declarative section
– Can be of scalar, composite, reference, or LOB data

type

– Can be based on the structure of another variable
or database object

– Can be initialized

• Variables declared in an external environment
such as iSQL*Plus are called host variables.

• Use DBMS_OUTPUT.PUT_LINE to display data from
a PL/SQL block.

Summary (continued)
All PL/SQL data types are scalar, composite, reference, or LOB type. Scalar data types do not have
any components within them, whereas composite data types have other data types within them.
PL/SQL variables are declared and initialized in the declarative section.

When a PL/SQL program is written and executed using iSQL*Plus, iSQL*Plus becomes the host
environment for the PL/SQL program. The variables declared in iSQL*Plus are called host
variables. Then the PL/SQL program is written and executed using, for example, Oracle Forms.
Forms becomes a host environment, and variables declared in Oracle Forms are called host
variables. Host variables are also called bind variables.

To display information from a PL/SQL block use DBMS_OUTPUT.PUT_LINE. DBMS_OUTPUT is
an Oracle-supplied package, and PUT_LINE is a procedure within that package. Within a PL/SQL
block, reference DBMS_OUTPUT.PUT_LINE and, in parentheses, specify the string that you want
to print to the screen.

Oracle9i: PL/SQL Fundamentals 1-35

Copyright © Oracle Corporation, 2001. All rights reserved.1-35

Practice 1 Overview

This practice covers the following topics:

• Determining validity of declarations

• Declaring a simple PL/SQL block

• Executing a simple PL/SQL block

Practice 1 Overview

This practice reinforces the basics of PL/SQL covered in this lesson, including data types,
definitions of identifiers, and validation of expressions. You put all these elements together to create
a simple PL/SQL block.

Paper-Based Questions

Questions 1 and 2 are paper-based questions.

Oracle9i: PL/SQL Fundamentals 1-36

Practice 1

1. Evaluate each of the following declarations. Determine which of them are not legal and explain
why.

a. DECLARE

v_id NUMBER(4);

b. DECLARE

v_x, v_y, v_z VARCHAR2(10);

c. DECLARE

v_birthdate DATE NOT NULL;

d. DECLARE

v_in_stock BOOLEAN := 1;

Oracle9i: PL/SQL Fundamentals 1-37

Practice 1 (continued)

2. In each of the following assignments, indicate whether the statement is valid and what the
valid data type of the result will be.

a. v_days_to_go := v_due_date - SYSDATE;

b. v_sender := USER || ’: ’ || TO_CHAR(v_dept_no);

c. v_sum := $100,000 + $250,000;

d. v_flag := TRUE;

e. v_n1 := v_n2 > (2 * v_n3);

f. v_value := NULL;

3. Create an anonymous block to output the phrase “My PL/SQL Block Works” to the screen.

Oracle9i: PL/SQL Fundamentals 1-38

Practice 1 (continued)

If you have time, complete the following exercise:

4. Create a block that declares two variables. Assign the value of these PL/SQL variables to
iSQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block in a file named p1q4.sql, by clicking the
Save Script button. Remember to save the script with a .sql extension.

V_CHAR Character (variable length)
V_NUM Number

Assign values to these variables as follows:

Variable Value
-------- -------------------------------------

V_CHAR The literal ’42 is the answer’
V_NUM The first two characters from V_CHAR

Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Executable Statements

Oracle9i: PL/SQL Fundamentals 2-2

Copyright © Oracle Corporation, 2001. All rights reserved.2-2

Objectives

After completing this lesson, you should be able to
do the following:

• Describe the significance of the executable
section

• Use identifiers correctly

• Write statements in the executable section

• Describe the rules of nested blocks

• Execute and test a PL/SQL block

• Use coding conventions

Lesson Aim

In this lesson, you learn how to write executable code in the PL/SQL block. You also learn the rules
for nesting PL/SQL blocks of code, as well as how to execute and test PL/SQL code.

Oracle9i: PL/SQL Fundamentals 2-3

Copyright © Oracle Corporation, 2001. All rights reserved.2-3

PL/SQL Block Syntax and Guidelines

• Statements can continue over several lines.

• Lexical units can be classified as:
– Delimiters

– Identifiers

– Literals

– Comments

PL/SQL Block Syntax and Guidelines

Because PL/SQL is an extension of SQL, the general syntax rules that apply to SQL also apply to
the PL/SQL language.

• A line of PL/SQL text contains groups of characters known as lexical units, which can be
classified as follows:

– Delimiters (simple and compound symbols)

– Identifiers, which include reserved words

– Literals

– Comments

• To improve readability, you can separate lexical units by spaces. In fact, you must separate
adjacent identifiers by a space or punctuation.

• You cannot embed spaces in lexical units except for string literals and comments.

• Statements can be split across lines, but keywords must not be split.

Oracle9i: PL/SQL Fundamentals 2-4

PL/SQL Block Syntax and Guidelines (continued)

Delimiters

Delimiters are simple or compound symbols that have special meaning to PL/SQL.

Simple Symbols

Compound Symbols

Note: Reserved words cannot be used as identifiers unless they are enclosed in double quotation marks
(for example, "SELECT").

Symbol Meaning

+ Addition operator

- Subtraction/negation operator

* Multiplication operator

/ Division operator

= Relational operator

@ Remote access indicator

; Statement terminator

Symbol Meaning

<> Relational operator

!= Relational operator

|| Concatenation operator

-- Single line comment indicator

/* Beginning comment delimiter

*/ Ending comment delimiter

:= Assignment operator

Oracle9i: PL/SQL Fundamentals 2-5

Copyright © Oracle Corporation, 2001. All rights reserved.2-5

Identifiers

• Can contain up to 30 characters

• Must begin with an alphabetic character

• Can contain numerals, dollar signs, underscores,
and number signs

• Cannot contain characters such as hyphens,
slashes, and spaces

• Should not have the same name as a database
table column name

• Should not be reserved words

Identifiers

Identifiers are used to name PL/SQL program items and units, which include constants, variables,
exceptions, cursors, cursor variables, subprograms, and packages.

• Identifiers can contain up to 30 characters, but they must start with an alphabetic character.

• Do not choose the same name for the identifier as the name of columns in a table used in the
block. If PL/SQL identifiers are in the same SQL statements and have the same name as a
column, then Oracle assumes that it is the column that is being referenced.

• Reserved words should be written in uppercase to promote readability.

• An identifier consists of a letter, optionally followed by more letters, numerals, dollar signs,
underscores, and number signs. Other characters such as hyphens, slashes, and spaces are
illegal, as the following examples show:

dots&dashes -- illegal ampersand
debit-amount -- illegal hyphen
on/off -- illegal slash
user id -- illegal space

money$$$tree, SN##, try_again_ are examples that show that adjoining and trailing dollar
signs, underscores, and number signs are allowed.

Oracle9i: PL/SQL Fundamentals 2-6

Copyright © Oracle Corporation, 2001. All rights reserved.2-6

PL/SQL Block Syntax and Guidelines

• Literals
– Character and date literals must be enclosed in

single quotation marks.

– Numbers can be simple values or scientific
notation.

• A slash (/) runs the PL/SQL block in a script file
or in some tools such as iSQL*PLUS.

v_name := ’Henderson’;

PL/SQL Block Syntax and Guidelines

A literal is an explicit numeric, character, string, or Boolean value that is not represented by an
identifier.

• Character literals include all the printable characters in the PL/SQL character set: letters,
numerals, spaces, and special symbols.

• Numeric literals can be represented either by a simple value (for example, –32.5) or by a
scientific notation (for example, 2E5, meaning 2* (10 to the power of 5) =
200000).

A PL/SQL program is terminated and executed by a slash (/) on a line by itself.

Oracle9i: PL/SQL Fundamentals 2-7

Copyright © Oracle Corporation, 2001. All rights reserved.2-7

Commenting Code

• Prefix single-line comments with two dashes (--).

• Place multiple-line comments between the symbols
/* and */.

Example:

DECLARE
...

v_sal NUMBER (9,2);
BEGIN

/* Compute the annual salary based on the
monthly salary input from the user */

v_sal := :g_monthly_sal * 12;
END; -- This is the end of the block

Commenting Code

Comment code to document each phase and to assist debugging. Comment the PL/SQL code with
two dashes (--) if the comment is on a single line, or enclose the comment between the symbols /*
and */ if the comment spans several lines. Comments are strictly informational and do not enforce
any conditions or behavior on behavioral logic or data. Well-placed comments are extremely
valuable for code readability and future code maintenance.

Example
In the example on the slide, the line enclosed within /* and */ is the comment that explains the
code that follows it.

Oracle9i: PL/SQL Fundamentals 2-8

Copyright © Oracle Corporation, 2001. All rights reserved.2-8

SQL Functions in PL/SQL

• Available in procedural statements:
– Single-row number
– Single-row character
– Data type conversion
– Date
– Timestamp
– GREATEST and LEAST

– Miscellaneous functions

• Not available in procedural statements:
– DECODE

– Group functions

Same as in SQL

SQL Functions in PL/SQL

Most of the functions available in SQL are also valid in PL/SQL expressions:

• Single-row number functions

• Single-row character functions

• Data type conversion functions

• Date functions

• Timestamp functions

• GREATEST, LEAST

• Miscellaneous functions

The following functions are not available in procedural statements:

• DECODE.

• Group functions: AVG, MIN, MAX, COUNT, SUM, STDDEV, and VARIANCE. Group functions
apply to groups of rows in a table and therefore are available only in SQL statements in a
PL/SQL block.

Oracle9i: PL/SQL Fundamentals 2-9

Copyright © Oracle Corporation, 2001. All rights reserved.2-9

SQL Functions in PL/SQL: Examples

• Build the mailing list for a company.

• Convert the employee name to lowercase.

v_mailing_address := v_name||CHR(10)||

v_address||CHR(10)||v_state||

CHR(10)||v_zip;

v_ename := LOWER(v_ename);

SQL Functions in PL/SQL: Examples

Most of the SQL functions can be used in PL/SQL. These built-in functions help you to manipulate
data; they fall into the following categories:

• Number

• Character

• Conversion

• Date

• Miscellaneous

The function examples in the slide are defined as follows:

• Build the mailing address for a company.

• Convert the name to lowercase.

CHR is the SQL function that converts an ASCII code to its corresponding character; 10 is the code
for a line feed.

PL/SQL has its own error handling functions which are:
• SQLCODE

• SQLERRM (These error handling functions are discussed later in this course)

Oracle9i: PL/SQL Fundamentals 2-10

Copyright © Oracle Corporation, 2001. All rights reserved.2-10

Data Type Conversion

• Convert data to comparable data types.

• Mixed data types can result in an error and affect
performance.

• Conversion functions:
– TO_CHAR

– TO_DATE

– TO_NUMBER

DECLARE

v_date DATE := TO_DATE(’12-JAN-2001’, ’DD-MON-YYYY’);
BEGIN

. . .

Data Type Conversion

PL/SQL attempts to convert data types dynamically if they are mixed in a statement. For example, if
you assign a NUMBER value to a CHAR variable, then PL/SQL dynamically translates the number
into a character representation, so that it can be stored in the CHAR variable. The reverse situation
also applies, provided that the character expression represents a numeric value.

If they are compatible, you can also assign characters to DATE variables and vice versa.

Within an expression, you should make sure that data types are the same. If mixed data types occur
in an expression, you should use the appropriate conversion function to convert the data.

Syntax

TO_CHAR (value, fmt)

TO_DATE (value, fmt)

TO_NUMBER (value, fmt)

where: value is a character string, number, or date.

fmt is the format model used to convert a value.

Oracle9i: PL/SQL Fundamentals 2-11

Copyright © Oracle Corporation, 2001. All rights reserved.2-11

Data Type Conversion

This statement produces a compilation error if the
variable v_date is declared as a DATE data type.

v_date := ’January 13, 2001’;

Data Type Conversion (continued)

The conversion example in the slide is defined as follows:

Store a character string representing a date in a variable that is declared as a DATE data type. This
code causes a syntax error.

Oracle9i: PL/SQL Fundamentals 2-12

Copyright © Oracle Corporation, 2001. All rights reserved.2-12

Data Type Conversion

v_date := TO_DATE (’January 13, 2001’,

’Month DD, YYYY’);

To correct the error, use the TO_DATE conversion
function.

Data Type Conversion (continued)

The conversion example in the slide to correct error from the previous slide is defined as follows:

To correct the error in the previous slide, convert the string to a date with the TO_DATE conversion
function.

PL/SQL attempts conversion if possible, but its success depends on the operations that are being
performed. It is good programming practice to explicitly perform data type conversions, because
they can favorably affect performance and remain valid even with a change in software versions.

Oracle9i: PL/SQL Fundamentals 2-13

Copyright © Oracle Corporation, 2001. All rights reserved.2-13

Nested Blocks
and Variable Scope

• PL/SQL blocks can be nested wherever an
executable statement is allowed.

• A nested block becomes a statement.

• An exception section can contain nested blocks.

• The scope of an identifier is that region of a
program unit (block, subprogram, or package)
from which you can reference the identifier.

Nested Blocks

One of the advantages that PL/SQL has over SQL is the ability to nest statements. You can nest
blocks wherever an executable statement is allowed, thus making the nested block a statement.
Therefore, you can break down the executable part of a block into smaller blocks. The exception
section can also contain nested blocks.

Variable Scope

References to an identifier are resolved according to its scope and visibility. The scope of an
identifier is that region of a program unit (block, subprogram, or package) from which you can
reference the identifier. An identifier is visible only in the regions from which you can reference the
identifier using an unqualified name. Identifiers declared in a PL/SQL block are considered local to
that block and global to all its subblocks. If a global identifier is redeclared in a subblock, both
identifiers remain in scope. Within the subblock, however, only the local identifier is visible because
you must use a qualified name to reference the global identifier.

Although you cannot declare an identifier twice in the same block, you can declare the same
identifier in two different blocks. The two items represented by the identifier are distinct, and any
change in one does not affect the other. However, a block cannot reference identifiers declared in
other blocks at the same level because those identifiers are neither local nor global to the block.

Oracle9i: PL/SQL Fundamentals 2-14

Copyright © Oracle Corporation, 2001. All rights reserved.2-14

Nested Blocks and Variable Scope

...
x BINARY_INTEGER;

BEGIN
...
DECLARE
y NUMBER;

BEGIN
y:= x;

END;
...

END;

Scope of x

Scope of y

Example:

Nested Blocks and Variable Scope

In the nested block shown on the slide, the variable named y can reference the variable named x.
Variable x, however, cannot reference variable y outside the scope of y. If variable y in the nested
block is given the same name as variable x in the outer block, its value is valid only for the duration
of the nested block.

Scope

The scope of an identifier is that region of a program unit (block, subprogram, or package) from
which you can reference the identifier.

Visibility

An identifier is visible only in the regions from which you can reference the identifier using an
unqualified name.

Oracle9i: PL/SQL Fundamentals 2-15

Copyright © Oracle Corporation, 2001. All rights reserved.2-15

Identifier Scope

An identifier is visible in the regions where you can
reference the identifier without having to qualify it:
• A block can look up to the enclosing block.

• A block cannot look down to enclosed blocks.

Identifier Scope

An identifier is visible in the block in which it is declared and in all nested subblocks, procedures,
and functions. If the block does not find the identifier declared locally, it looks up to the declarative
section of the enclosing (or parent) blocks. The block never looks down to enclosed (or child) blocks
or sideways to sibling blocks.

Scope applies to all declared objects, including variables, cursors, user-defined exceptions, and
constants.

Oracle9i: PL/SQL Fundamentals 2-16

Copyright © Oracle Corporation, 2001. All rights reserved.2-16

Qualify an Identifier

• The qualifier can be the label of an enclosing
block.

• Qualify an identifier by using the block label prefix.

<<outer>>
DECLARE

birthdate DATE;
BEGIN

DECLARE
birthdate DATE;

BEGIN
...

outer.birthdate :=
TO_DATE(’03-AUG-1976’,

’DD-MON-YYYY’);
END;

....
END;

Qualify an Identifier

Qualify an identifier by using the block label prefix. In the example on the slide, the outer block is
labeled outer. In the inner block, a variable with the same name, birthdate, as the variable in
the outer block is declared. To reference the variable, birthdate, from the outer block in the
inner block, prefix the variable by the block name, outer.birthdate.

For more information on block labels, see PL/SQL User’s Guide and Reference, “Fundamentals.”

Oracle9i: PL/SQL Fundamentals 2-17

Copyright © Oracle Corporation, 2001. All rights reserved.2-17

Determining Variable Scope
Class Exercise

<<outer>>
DECLARE

v_sal NUMBER(7,2) := 60000;
v_comm NUMBER(7,2) := v_sal * 0.20;
v_message VARCHAR2(255) := ’ eligible for commission’;

BEGIN
DECLARE

v_sal NUMBER(7,2) := 50000;
v_comm NUMBER(7,2) := 0;
v_total_comp NUMBER(7,2) := v_sal + v_comm;

BEGIN
v_message := ’CLERK not’||v_message;
outer.v_comm := v_sal * 0.30;

END;
v_message := ’SALESMAN’||v_message;

END;
2

1

Class Exercise

Evaluate the PL/SQL block on the slide. Determine each of the following values according to the
rules of scoping:

1. The value of V_MESSAGE at position 1.

2. The value of V_TOTAL_COMP at position 2.

3. The value of V_COMM at position 1.

4. The value of outer.V_COMM at position 1.

5. The value of V_COMM at position 2.

6. The value of V_MESSAGE at position 2.

Oracle9i: PL/SQL Fundamentals 2-18

Copyright © Oracle Corporation, 2001. All rights reserved.2-18

Operators in PL/SQL

• Logical

• Arithmetic

• Concatenation

• Parentheses to control order
of operations

• Exponential operator (**)

Same as in SQL

Order of Operations

The operations within an expression are performed in a particular order depending on their
precedence (priority). The following table shows the default order of operations from high priority to
low priority:

Note: It is not necessary to use parentheses with Boolean expressions, but it does make the text
easier to read.

Operator Operation

** Exponentiation
+, - Identity, negation
*, / Multiplication, division
+, -, || Addition, subtraction, concatenation
=, <, >, <=, >=, <>, !=, ~=, ^=,
IS NULL, LIKE, BETWEEN, IN

Comparison

NOT Logical negation
AND Conjunction
OR Inclusion

Oracle9i: PL/SQL Fundamentals 2-19

Copyright © Oracle Corporation, 2001. All rights reserved.2-19

Examples:

• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a
value.

Operators in PL/SQL

v_count := v_count + 1;

v_equal := (v_n1 = v_n2);

v_valid := (v_empno IS NOT NULL);

Operators in PL/SQL

When working with nulls, you can avoid some common mistakes by keeping in mind the following
rules:

• Comparisons involving nulls always yield NULL.

• Applying the logical operator NOT to a null yields NULL.

• In conditional control statements, if the condition yields NULL, its associated sequence
of statements is not executed.

Oracle9i: PL/SQL Fundamentals 2-20

Copyright © Oracle Corporation, 2001. All rights reserved.2-20

Programming Guidelines

Make code maintenance easier by:

• Documenting code with comments

• Developing a case convention for the code

• Developing naming conventions for identifiers and
other objects

• Enhancing readability by indenting

Programming Guidelines

Follow programming guidelines shown on the slide to produce clear code and reduce maintenance
when developing a PL/SQL block.

Code Conventions

The following table provides guidelines for writing code in uppercase or lowercase to help you
distinguish keywords from named objects.

Category Case Convention Examples

SQL statements Uppercase SELECT, INSERT

PL/SQL keywords Uppercase DECLARE, BEGIN, IF

Datatypes Uppercase VARCHAR2, BOOLEAN

Identifiers and parameters Lowercase v_sal, emp_cursor, g_sal,
p_empno

Database tables and columns Lowercase employees, employee_id,
department_id

Oracle9i: PL/SQL Fundamentals 2-21

Copyright © Oracle Corporation, 2001. All rights reserved.2-21

Indenting Code

For clarity, indent each level of code.

Example:

BEGIN
IF x=0 THEN

y:=1;
END IF;

END;

DECLARE
v_deptno NUMBER(4);
v_location_id NUMBER(4);

BEGIN
SELECT department_id,

location_id
INTO v_deptno,

v_location_id
FROM departments
WHERE department_name

= ’Sales’;
...
END;
/

Indenting Code

For clarity, and to enhance readability, indent each level of code. To show structure, you can divide
lines using carriage returns and indent lines using spaces or tabs. Compare the following IF
statements for readability:

IF x>y THEN v_max:=x;ELSE v_max:=y;END IF;

IF x > y THEN

v_max := x;

ELSE

v_max := y;

END IF;

Oracle9i: PL/SQL Fundamentals 2-22

Copyright © Oracle Corporation, 2001. All rights reserved.2-22

Summary

In this lesson you should have learned the following:

• PL/SQL block syntax and guidelines

• How to use identifiers correctly

• PL/SQL block structure: nesting blocks and
scoping rules

• PL/SQL programming:
– Functions

– Data type conversions

– Operators

– Conventions and guidelines

DECLARE

BEGIN

END;

EXCEPTION

…

…
…

Summary

Because PL/SQL is an extension of SQL, the general syntax rules that apply to SQL also apply to
the PL/SQL language.

Identifiers are used to name PL/SQL program items and units, which include constants, variables,
exceptions, cursors, cursor variables, subprograms, and packages.

A block can have any number of nested blocks defined within its executable part. Blocks defined
within a block are called subblocks. You can nest blocks only in the executable part of a block.

Most of the functions available in SQL are also valid in PL/SQL expressions. Conversion functions
convert a value from one data type to another. Generally, the form of the function follows the data
type TO data type convention. The first data type is the input data type. The second data type is the
output data type.

Comparison operators compare one expression to another. The result is always TRUE, FALSE, or
NULL. Typically, you use comparison operators in conditional control statements and in the WHERE
clause of SQL data manipulation statements. The relational operators allow you to compare
arbitrarily complex expressions.

Variables declared in iSQL*Plus are called bind variables. To reference these variables in PL/SQL
programs, they should be preceded by a colon.

Oracle9i: PL/SQL Fundamentals 2-23

Copyright © Oracle Corporation, 2001. All rights reserved.2-23

Practice 2 Overview

This practice covers the following topics:

• Reviewing scoping and nesting rules

• Developing and testing PL/SQL blocks

Practice 2 Overview

This practice reinforces the basics of PL/SQL that were presented in the lesson. The practices use
sample PL/SQL blocks and test the understanding of the rules of scoping. Students also write and
test PL/SQL blocks.

Paper-Based Questions

Questions 1 and 2 are paper-based questions.

Oracle9i: PL/SQL Fundamentals 2-24

Practice 2

PL/SQL Block

DECLARE

v_weight NUMBER(3) := 600;

v_message VARCHAR2(255) := ’Product 10012’;

BEGIN

DECLARE

v_weight NUMBER(3) := 1;

v_message VARCHAR2(255) := ’Product 11001’;

v_new_locn VARCHAR2(50) := ’Europe’;

BEGIN

v_weight := v_weight + 1;

v_new_locn := ’Western ’ || v_new_locn;

END;

v_weight := v_weight + 1;

v_message := v_message || ’ is in stock’;

v_new_locn := ’Western ’ || v_new_locn;

END;

/

1. Evaluate the PL/SQL block above and determine the data type and value of each of the
following variables according to the rules of scoping.

a. The value of V_WEIGHT at position 1 is:

b. The value of V_NEW_LOCN at position 1 is:

c. The value of V_WEIGHT at position 2 is:

d. The value of V_MESSAGE at position 2 is:

e. The value of V_NEW_LOCN at position 2 is:

2

1

Oracle9i: PL/SQL Fundamentals 2-25

Practice 2 (continued)

Scope Example

DECLARE

v_customer VARCHAR2(50) := ’Womansport’;

v_credit_rating VARCHAR2(50) := ’EXCELLENT’;

BEGIN

DECLARE

v_customer NUMBER(7) := 201;

v_name VARCHAR2(25) := ’Unisports’;

BEGIN

v_customer v_name v_credit_rating

END;

v_customer v_name v_credit_rating

END;

/

2. Suppose you embed a subblock within a block, as shown above. You declare two variables,
V_CUSTOMER and V_CREDIT_RATING, in the main block. You also declare two variables,
V_CUSTOMER and V_NAME, in the subblock. Determine the values and data types for each of
the following cases.

a. The value of V_CUSTOMER in the subblock is:

b. The value of V_NAME in the subblock is:

c. The value of V_CREDIT_RATING in the subblock is:

d. The value of V_CUSTOMER in the main block is:

e. The value of V_NAME in the main block is:

f. The value of V_CREDIT_RATING in the main block is:

Oracle9i: PL/SQL Fundamentals 2-26

Practice 2 (continued)

3. Create and execute a PL/SQL block that accepts two numbers through iSQL*Plus
substitution
variables.

a. Use the DEFINE command to provide the two values.

DEFINE p_num1 = 2

DEFINE p_num2 = 4

b. Pass the two values defined in step a above, to the PL/SQL block through iSQL*Plus
substitution variables. The first number should be divided by the second number and have the
second number added to the result. The result should be stored in a PL/SQL variable and
printed on the screen.

Note: SET VERIFY OFF in the PL/SQL block.

4. Build a PL/SQL block that computes the total compensation for one year.

a. The annual salary and the annual bonus percentage values are defined using the DEFINE
command.

b. Pass the values defined in the above step to the PL/SQL block through iSQL*Plus
substitution variables. The bonus must be converted from a whole number to a decimal (for
example, 15 to .15). If the salary is null, set it to zero before computing the total
compensation. Execute the PL/SQL block. Reminder: Use the NVL function to handle null
values.

Note: Total compensation is the sum of the annual salary and the annual bonus.

To test the NVL function, set the DEFINE variable equal to NULL.

DEFINE p_salary = 50000

DEFINE p_bonus = 10

Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with
the Oracle Server

Oracle9i: PL/SQL Fundamentals 3-2

Copyright © Oracle Corporation, 2001. All rights reserved.3-2

Objectives

After completing this lesson, you should be able to

do the following:

• Write a successful SELECT statement in PL/SQL

• Write DML statements in PL/SQL

• Control transactions in PL/SQL

• Determine the outcome of SQL data manipulation
language (DML) statements

Lesson Aim
In this lesson, you learn to embed standard SQL SELECT, INSERT, UPDATE, and DELETE
statements in PL/SQL blocks. You also learn to control transactions and determine the outcome of
SQL data manipulation language (DML) statements in PL/SQL.

Oracle9i: PL/SQL Fundamentals 3-3

Copyright © Oracle Corporation, 2001. All rights reserved.3-3

SQL Statements in PL/SQL

• Extract a row of data from the database by using
the SELECT command.

• Make changes to rows in the database by using
DML commands.

• Control a transaction with the COMMIT, ROLLBACK,
or SAVEPOINT command.

• Determine DML outcome with implicit cursor
attributes.

SQL Statements in PL/SQL

When you extract information from or apply changes to the database, you must use SQL. PL/SQL
supports data manipulation language and transaction control commands of SQL. You can use
SELECT statements to populate variables with values queried from a row in a table. You can use
DML commands to modify the data in a database table. However, remember the following points
about PL/SQL blocks while using DML statements and transaction control commands in PL/SQL
blocks:

• The keyword END signals the end of a PL/SQL block, not the end of a transaction. Just as a
block can span multiple transactions, a transaction can span multiple blocks.

• PL/SQL does not directly support data definition language (DDL) statements, such as
CREATE TABLE, ALTER TABLE, or DROP TABLE.

• PL/SQL does not support data control language (DCL) statements, such as GRANT or
REVOKE.

Oracle9i: PL/SQL Fundamentals 3-4

Copyright © Oracle Corporation, 2001. All rights reserved.3-4

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT
statement.

Syntax:

SELECT select_list
INTO {variable_name[, variable_name]...

| record_name}
FROM table
[WHERE condition];

Retrieving Data Using PL/SQL
Use the SELECT statement to retrieve data from the database. In the syntax:

select_list is a list of at least one column and can include SQL expressions, row
functions, or group functions.

variable_name is the scalar variable that holds the retrieved value.

record_name is the PL/SQL RECORD that holds the retrieved values.

table specifies the database table name.

condition is composed of column names, expressions, constants, and comparison operators,
including PL/SQL variables and constants.

Guidelines for Retrieving Data in PL/SQL
• Terminate each SQL statement with a semicolon (;).

• The INTO clause is required for the SELECT statement when it is embedded in PL/SQL.

• The WHERE clause is optional and can be used to specify input variables, constants, literals, or
PL/SQL expressions.

Oracle9i: PL/SQL Fundamentals 3-5

Retrieving Data Using PL/SQL (continued)
• Specify the same number of variables in the INTO clause as database columns in the SELECT

clause. Be sure that they correspond positionally and that their data types are compatible.

• Use group functions, such as SUM, in a SQL statement, because group functions apply to
groups of rows in a table.

Oracle9i: PL/SQL Fundamentals 3-6

Copyright © Oracle Corporation, 2001. All rights reserved.3-6

SELECT Statements in PL/SQL

• The INTO clause is required.

• Queries must return one and only one row.

Example:
DECLARE

v_deptno NUMBER(4);
v_location_id NUMBER(4);

BEGIN
SELECT department_id, location_id
INTO v_deptno, v_location_id
FROM departments
WHERE department_name = ’Sales’;
...

END;
/

SELECT Statements in PL/SQL

INTO Clause

The INTO clause is mandatory and occurs between the SELECT and FROM clauses. It is used to
specify the names of variables that hold the values that SQL returns from the SELECT clause. You
must specify one variable for each item selected, and the order of the variables must correspond with
the items selected.

Use the INTO clause to populate either PL/SQL variables or host variables.

Queries Must Return One and Only One Row

SELECT statements within a PL/SQL block fall into the ANSI classification of embedded SQL, for
which the following rule applies: queries must return one and only one row. A query that returns
more than one row or no row generates an error.

PL/SQL manages these errors by raising standard exceptions, which you can trap in the exception
section of the block with the NO_DATA_FOUND and TOO_MANY_ROWS exceptions (exception
handling is covered in a subsequent lesson). Code SELECT statements to return a single row.

Oracle9i: PL/SQL Fundamentals 3-7

Copyright © Oracle Corporation, 2001. All rights reserved.3-7

Retrieving Data in PL/SQL

Retrieve the hire date and the salary for the specified
employee.

Example:
DECLARE

v_hire_date employees.hire_date%TYPE;
v_salary employees.salary%TYPE;

BEGIN
SELECT hire_date, salary
INTO v_hire_date, v_salary
FROM employees
WHERE employee_id = 100;
...

END;
/

Retrieving Data in PL/SQL
In the example on the slide, the variables v_hire_date and v_salary are declared in the
DECLARE section of the PL/SQL block. In the executable section, the values of the columns
HIRE_DATE and SALARY for the employee with the EMPLOYEE_ID 100 is retrieved from the
EMPLOYEES table and stored in the v_hire_date and v_salary variables, respectively.
Observe how the INTO clause, along with the SELECT statement, retrieves the database column
values into the PL/SQL variables.

Oracle9i: PL/SQL Fundamentals 3-8

Copyright © Oracle Corporation, 2001. All rights reserved.3-8

Retrieving Data in PL/SQL

Return the sum of the salaries for all employees in
the specified department.

Example:
SET SERVEROUTPUT ON

DECLARE
v_sum_sal NUMBER(10,2);
v_deptno NUMBER NOT NULL := 60;

BEGIN
SELECT SUM(salary) -- group function
INTO v_sum_sal
FROM employees
WHERE department_id = v_deptno;
DBMS_OUTPUT.PUT_LINE (’The sum salary is ’ ||

TO_CHAR(v_sum_sal));
END;
/

Retrieving Data in PL/SQL
In the example on the slide, the v_sum_sal and v_deptno variables are declared in the
DECLARE section of the PL/SQL block. In the executable section, the total salary for the department
with the DEPARTMENT_ID 60 is computed using the SQL aggregate function SUM, and assigned to
the v_sum_sal variable. Note that group functions cannot be used in PL/SQL syntax. They are
used in SQL statements within a PL/SQL block.

The output of the PL/SQL block in the slide is shown below:

Oracle9i: PL/SQL Fundamentals 3-9

Copyright © Oracle Corporation, 2001. All rights reserved.3-9

Naming Conventions

DECLARE
hire_date employees.hire_date%TYPE;
sysdate hire_date%TYPE;
employee_id employees.employee_id%TYPE := 176;

BEGIN
SELECT hire_date, sysdate
INTO hire_date, sysdate
FROM employees
WHERE employee_id = employee_id;

END;
/

Naming Conventions

In potentially ambiguous SQL statements, the names of database columns take precedence over the
names of local variables. The example shown on the slide is defined as follows: Retrieve the hire
date and today’s date from the EMPLOYEES table for employee ID 176. This example raises an
unhandled run-time exception because in the WHERE clause, the PL/SQL variable names are the
same as that of the database column names in the EMPLOYEES table.

The following DELETE statement removes all employees from the EMPLOYEES table where last
name is not null, not just 'King', because the Oracle server assumes that both LAST_NAMES in the
WHERE clause refer to the database column:

DECLARE
last_name VARCHAR2(25) := ’King’;

BEGIN
DELETE FROM employees WHERE last_name = last_name;

. . .

Oracle9i: PL/SQL Fundamentals 3-10

Copyright © Oracle Corporation, 2001. All rights reserved.3-10

INSERT

UPDATE

DELETE

Manipulating Data Using PL/SQL

Make changes to database tables by using DML
commands:

• INSERT

• UPDATE

• DELETE

• MERGE MERGE

Manipulating Data Using PL/SQL

You manipulate data in the database by using the DML commands. You can issue the DML
commands INSERT, UPDATE, DELETE and MERGE without restriction in PL/SQL. Row locks
(and table locks) are released by including COMMIT or ROLLBACK statements in the PL/SQL code.

• The INSERT statement adds new rows of data to the table.

• The UPDATE statement modifies existing rows in the table.

• The DELETE statement removes unwanted rows from the table.

• The MERGE statement selects rows from one table to update or insert into another table. The
decision whether to update or insert into the target table is based on a condition in the ON
clause.

Note: MERGE is a deterministic statement. That is, you cannot update the same row of the target
table multiple times in the same MERGE statement. You must have INSERT and UPDATE object
privileges in the target table and the SELECT privilege on the source table.

Oracle9i: PL/SQL Fundamentals 3-11

Copyright © Oracle Corporation, 2001. All rights reserved.3-11

Inserting Data

Add new employee information to the EMPLOYEES
table.

Example:

BEGIN
INSERT INTO employees
(employee_id, first_name, last_name, email,
hire_date, job_id, salary)

VALUES
(employees_seq.NEXTVAL, ’Ruth’, ’Cores’, ’RCORES’,
sysdate, ’AD_ASST’, 4000);

END;
/

Inserting Data
In the example on the slide, an INSERT statement is used within a PL/SQL block to insert a record
into the EMPLOYEES table. While using the INSERT command in a PL/SQL block, you can:

• Use SQL functions, such as USER and SYSDATE

• Generate primary key values by using database sequences

• Derive values in the PL/SQL block

• Add column default values

Note: There is no possibility for ambiguity with identifiers and column names in the INSERT
statement. Any identifier in the INSERT clause must be a database column name.

Oracle9i: PL/SQL Fundamentals 3-12

Copyright © Oracle Corporation, 2001. All rights reserved.3-12

Updating Data

Increase the salary of all employees who are stock
clerks.

Example:

DECLARE
v_sal_increase employees.salary%TYPE := 800;

BEGIN
UPDATE employees
SET salary = salary + v_sal_increase
WHERE job_id = ’ST_CLERK’;

END;
/

Updating Data

There may be ambiguity in the SET clause of the UPDATE statement because although the identifier
on the left of the assignment operator is always a database column, the identifier on the right can be
either a database column or a PL/SQL variable.

Remember that the WHERE clause is used to determine which rows are affected. If no rows are
modified, no error occurs, unlike the SELECT statement in PL/SQL.

Note: PL/SQL variable assignments always use :=, and SQL column assignments always use =.
Recall that if column names and identifier names are identical in the WHERE clause, the Oracle
server looks to the database first for the name.

Oracle9i: PL/SQL Fundamentals 3-13

Copyright © Oracle Corporation, 2001. All rights reserved.3-13

Deleting Data

Delete rows that belong to department 10 from the
EMPLOYEES table.

Example:

DECLARE
v_deptno employees.department_id%TYPE := 10;

BEGIN
DELETE FROM employees
WHERE department_id = v_deptno;

END;
/

Deleting Data
The DELETE statement removes unwanted rows from a table. Without the use of a WHERE clause,
the entire contents of a table can be removed, provided there are no integrity constraints.

Oracle9i: PL/SQL Fundamentals 3-14

Copyright © Oracle Corporation, 2001. All rights reserved.3-14

Merging Rows
Insert or update rows in the COPY_EMP table to match
the EMPLOYEES table.

DECLARE
v_empno employees.employee_id%TYPE := 100;

BEGIN
MERGE INTO copy_emp c

USING employees e
ON (e.employee_id = v_empno)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
. . .

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

. . .,e.department_id);
END;

Merging Rows
The MERGE statement inserts or updates rows in one table, using data from another table. Each row
is inserted or updated in the target table, depending upon an equijoin condition.

The example shown matches the employee_id in the COPY_EMP table to the employee_id in the
EMPLOYEES table. If a match is found, the row is updated to match the row in the EMPLOYEES
table. If the row is not found, it is inserted into the COPY_EMP table.

The complete example for using MERGE in a PL/SQL block is shown in the next page.

Oracle9i: PL/SQL Fundamentals 3-15

Merging Data
DECLARE

v_empno EMPLOYEES.EMPLOYEE_ID%TYPE := 100;

BEGIN

MERGE INTO copy_emp c

USING employees e

ON (e.employee_id = v_empno)

WHEN MATCHED THEN

UPDATE SET

c.first_name = e.first_name,

c.last_name = e.last_name,

c.email = e.email,

c.phone_number = e.phone_number,

c.hire_date = e.hire_date,

c.job_id = e.job_id,

c.salary = e.salary,

c.commission_pct = e.commission_pct,

c.manager_id = e.manager_id,

c.department_id = e.department_id

WHEN NOT MATCHED THEN

INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,

e.salary, e.commission_pct, e.manager_id,

e.department_id);

END;

/

Oracle9i: PL/SQL Fundamentals 3-16

Copyright © Oracle Corporation, 2001. All rights reserved.3-16

Naming Conventions

• Use a naming convention to avoid ambiguity in the
WHERE clause.

• Database columns and identifiers should have
distinct names.

• Syntax errors can arise because PL/SQL checks
the database first for a column in the table.

• The names of local variables and formal
parameters take precedence over the names of
database tables.

• The names of database table columns take
precedence over the names of local variables.

Naming Conventions
Avoid ambiguity in the WHERE clause by adhering to a naming convention that distinguishes
database column names from PL/SQL variable names.

• Database columns and identifiers should have distinct names.

• Syntax errors can arise because PL/SQL checks the database first for a column in the table.

Oracle9i: PL/SQL Fundamentals 3-17

Naming Conventions (continued)

The following table shows a set of prefixes and suffixes that distinguish identifiers from other
identifiers, database objects, and other named objects.

In such cases, to avoid ambiguity, prefix the names of local variables and formal parameters with
v_,
as follows:
DECLARE

v_last_name VARCHAR2(25);

Note: There is no possibility for ambiguity in the SELECT clause because any identifier in the
SELECT clause must be a database column name. There is no possibility for ambiguity in the INTO
clause because identifiers in the INTO clause must be PL/SQL variables. There is the possibility of
confusion only in the WHERE clause.

Identifier Naming Convention Example

Variable v_name v_sal

Constant c_name c_company_name

Cursor name_cursor emp_cursor

Exception e_name e_too_many

Table type name_table_type amount_table_type

Table name_table countries

Record type name_record_type emp_record_type

Record name_record customer_record

iSQL*Plus substitution variable
(also referred to as substitution
parameter)

p_name p_sal

iSQL*Plus host or bind variable g_name g_year_sal

Oracle9i: PL/SQL Fundamentals 3-18

Copyright © Oracle Corporation, 2001. All rights reserved.3-18

SQL Cursor

• A cursor is a private SQL work area.

• There are two types of cursors:
– Implicit cursors

– Explicit cursors

• The Oracle server uses implicit cursors to parse
and execute your SQL statements.

• Explicit cursors are explicitly declared by the
programmer.

SQL Cursor

Whenever you issue a SQL statement, the Oracle server opens an area of memory in which the
command is parsed and executed. This area is called a cursor.

When the executable part of a block issues a SQL statement, PL/SQL creates an implicit cursor,
which PL/SQL manages automatically. The programmer explicitly declares and names an explicit
cursor. There are four attributes available in PL/SQL that can be applied to cursors.

Note: More information about explicit cursors is covered in a subsequent lesson.

For more information, refer to PL/SQL User’s Guide and Reference, “Interaction with Oracle.”

Oracle9i: PL/SQL Fundamentals 3-19

Copyright © Oracle Corporation, 2001. All rights reserved.3-19

SQL Cursor Attributes

Using SQL cursor attributes, you can test the
outcome of your SQL statements.

SQL%ROWCOUNT Number of rows affected by the
most recent SQL statement (an
integer value)

SQL%FOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement affects one or more rows

SQL%NOTFOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement does not affect any rows

SQL%ISOPEN Always evaluates to FALSE because
PL/SQL closes implicit cursors
immediately after they are executed

SQL Cursor Attributes

SQL cursor attributes allow you to evaluate what happened when an implicit cursor was last used.
Use these attributes in PL/SQL statements, but not in SQL statements.

You can use the attributes SQL%ROWCOUNT, SQL%FOUND, SQL%NOTFOUND, and SQL%ISOPEN
in the exception section of a block to gather information about the execution of a DML statement.
PL/SQL does not return an error if a DML statement does not affect any rows in the underlying
table. However, if a SELECT statement does not retrieve any rows, PL/SQL returns an exception.

Oracle9i: PL/SQL Fundamentals 3-20

Copyright © Oracle Corporation, 2001. All rights reserved.3-20

SQL Cursor Attributes

Delete rows that have the specified employee ID from
the EMPLOYEES table. Print the number of rows
deleted.

Example:

VARIABLE rows_deleted VARCHAR2(30)
DECLARE

v_employee_id employees.employee_id%TYPE := 176;
BEGIN

DELETE FROM employees
WHERE employee_id = v_employee_id;
:rows_deleted := (SQL%ROWCOUNT ||

’ row deleted.’);
END;
/
PRINT rows_deleted

SQL Cursor Attributes (continued)
The example on the slide deletes the rows from the EMPLOYEES table for EMPLOYEE_ID 176.
Using the SQL%ROWCOUNT attribute, you can print the number of rows deleted.

Oracle9i: PL/SQL Fundamentals 3-21

Copyright © Oracle Corporation, 2001. All rights reserved.3-21

Transaction Control Statements

• Initiate a transaction with the first DML command
to follow a COMMIT or ROLLBACK.

• Use COMMIT and ROLLBACK SQL statements to
terminate a transaction explicitly.

Transaction Control Statements
You control the logic of transactions with COMMIT and ROLLBACK SQL statements, rendering
some groups of database changes permanent while discarding others. As with Oracle server, DML
transactions start at the first command that follows a COMMIT or ROLLBACK, and end on the next
successful COMMIT or ROLLBACK. These actions may occur within a PL/SQL block or as a result
of events in the host environment (for example, in most cases, ending a iSQL*Plus session
automatically commits the pending transaction). To mark an intermediate point in the transaction
processing, use SAVEPOINT.

COMMIT [WORK];

SAVEPOINT savepoint_name;

ROLLBACK [WORK];

ROLLBACK [WORK] TO [SAVEPOINT] savepoint_name;

where: WORK is for compliance with ANSI standards.

Note: The transaction control commands are all valid within PL/SQL, although the host
environment may place some restriction on their use.

You can also include explicit locking commands (such as LOCK TABLE and SELECT ... FOR
UPDATE) in a block, which stays in effect until the end of the transaction (a subsequent lesson
covers more information on the FOR UPDATE command). Also, one PL/SQL block does not
necessarily imply one transaction.

Oracle9i: PL/SQL Fundamentals 3-22

Copyright © Oracle Corporation, 2001. All rights reserved.3-22

Summary

In this lesson you should have learned how to:

• Embed SQL in the PL/SQL block using SELECT,
INSERT, UPDATE, DELETE, and MERGE

• Embed transaction control statements in a PL/SQL
block COMMIT, ROLLBACK, and SAVEPOINT

Summary
The DML commands INSERT, UPDATE, DELETE, and MERGE can be used in PL/SQL programs
without any restriction. The COMMIT statement ends the current transaction and makes permanent
any changes made during that transaction. The ROLLBACK statement ends the current transaction
and cancels any changes that were made during that transaction. SAVEPOINT names and marks the
current point in the processing of a transaction. With the ROLLBACK TO SAVEPOINT statement,
you can undo parts of a transaction instead of the whole transaction.

Oracle9i: PL/SQL Fundamentals 3-23

Copyright © Oracle Corporation, 2001. All rights reserved.3-23

Summary

In this lesson you should have learned the following:

• There are two cursor types: implicit and explicit.

• Implicit cursor attributes are used to verify the
outcome of DML statements:
– SQL%ROWCOUNT

– SQL%FOUND

– SQL%NOTFOUND

– SQL%ISOPEN

• Explicit cursors are defined by the programmer.

Summary (continued)

An implicit cursor is declared by PL/SQL for each SQL data manipulation statement. Every implicit
cursor has four attributes: %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. When appended
to the cursor or cursor variable, these attributes return useful information about the execution of a
DML statement. You can use cursor attributes in procedural statements but not in SQL statements.
Explicit cursors are defined by the programmer.

Oracle9i: PL/SQL Fundamentals 3-24

Copyright © Oracle Corporation, 2001. All rights reserved.3-24

Practice 3 Overview

This practice covers creating a PL/SQL block to:

• Select data from a table

• Insert data into a table

• Update data in a table

• Delete a record from a table

Practice 3 Overview

In this practice you write PL/SQL blocks to select, input, update, and delete information in a table,
using basic SQL query and DML statements within a PL/SQL block.

Oracle9i: PL/SQL Fundamentals 3-25

Practice 3
1. Create a PL/SQL block that selects the maximum department number in the DEPARTMENTS

table and stores it in an iSQL*Plus variable. Print the results to the screen. Save your PL/SQL
block in a file named p3q1.sql. by clicking the Save Script button. Save the script
with a .sql extension.

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the
DEPARTMENTS table. Save the PL/SQL block in a file named p3q2.sql by clicking the
Save Script button. Save the script with a .sql extension.

a. Use the DEFINE command to provide the department name. Name the new
department Education.

b. Pass the value defined for the department name to the PL/SQL block through a
iSQL*Plus substitution variable. Rather than printing the department number retrieved
from exercise 1, add 10 to it and use it as the department number for the new
department.

c. Leave the location number as null for now.

d. Execute the PL/SQL block.

e. Display the new department that you created.

3. Create a PL/SQL block that updates the location ID for the new department that you added in
the previous practice. Save your PL/SQL block in a file named p3q3.sql by clicking the
Save Script button. Save the script with a .sql extension.

a. Use an iSQL*Plus variable for the department ID number that you added in the
previous practice.

b. Use the DEFINE command to provide the location ID. Name the new location ID
1700.

DEFINE p_deptno = 280

DEFINE p_loc = 1700

c. Pass the value to the PL/SQL block through a iSQL*Plus substitution variable. Test the
PL/SQL block.

d. Display the department that you updated.

Oracle9i: PL/SQL Fundamentals 3-26

Practice 3 (continued)

4. Create a PL/SQL block that deletes the department that you created in exercise 2. Save the
PL/SQL block in a file named p3q4.sql. by clicking the Save Script button. Save the
script with a .sql extension.

a. Use the DEFINE command to provide the department ID.

DEFINE p_deptno=280

b. Pass the value to the PL/SQL block through a iSQL*Plus substitution variable. Print to
the screen the number of rows affected.

c. Test the PL/SQL block.

d. Confirm that the department has been deleted.

Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Control Structures

Oracle9i: PL/SQL Fundamentals 4-2

Copyright © Oracle Corporation, 2001. All rights reserved.4-2

Objectives

After completing this lesson, you should be able to
do the following:

• Identify the uses and types of control structures

• Construct an IF statement

• Use CASE expressions

• Construct and identify different loop statements

• Use logic tables

• Control block flow using nested loops and labels

Lesson Aim
In this lesson, you learn about conditional control within the PL/SQL block by using IF statements
and loops.

Oracle9i: PL/SQL Fundamentals 4-3

Copyright © Oracle Corporation, 2001. All rights reserved.4-3

Controlling PL/SQL Flow of Execution

• You can change the logical execution of
statements using conditional IF statements and
loop control structures.

• Conditional IF statements:
– IF-THEN-END IF

– IF-THEN-ELSE-END IF

– IF-THEN-ELSIF-END IF

Controlling PL/SQL Flow of Execution

You can change the logical flow of statements within the PL/SQL block with a number of control
structures. This lesson addresses three types of PL/SQL control structures: conditional constructs
with the IF statement, CASE expressions, and LOOP control structures (covered later in this lesson).

There are three forms of IF statements:

• IF-THEN-END IF

• IF-THEN-ELSE-END IF

• IF-THEN-ELSIF-END IF

Oracle9i: PL/SQL Fundamentals 4-4

Copyright © Oracle Corporation, 2001. All rights reserved.4-4

IF Statements

IF condition THEN
statements;

[ELSIF condition THEN
statements;]

[ELSE
statements;]

END IF;

Syntax:

If the employee name is Gietz, set the Manager ID to
102.
IF UPPER(v_last_name) = ’GIETZ’ THEN

v_mgr := 102;
END IF;

IF Statements

The structure of the PL/SQL IF statement is similar to the structure of IF statements in other
procedural languages. It allows PL/SQL to perform actions selectively based on conditions.

In the syntax:

condition is a Boolean variable or expression (TRUE, FALSE, or NULL). (It
is associated with a sequence of statements, which is executed only
if the expression yields TRUE.)

THEN is a clause that associates the Boolean expression that precedes it
with the sequence of statements that follows it.

statements can be one or more PL/SQL or SQL statements. (They may include
further IF statements containing several nested IF, ELSE, and ELSIF
statements.)

ELSIF is a keyword that introduces a Boolean expression. (If the first condition
yields FALSE or NULL then the ELSIF keyword introduces additional
conditions.)

ELSE is a keyword that executes the sequence of statements that follows
it if the control reaches it.

Oracle9i: PL/SQL Fundamentals 4-5

Copyright © Oracle Corporation, 2001. All rights reserved.4-5

Simple IF Statements

If the last name is Vargas:

• Set job ID to SA_REP

• Set department number to 80

. . .
IF v_ename = ’Vargas’ THEN

v_job := ’SA_REP’;
v_deptno := 80;

END IF;
. . .

Simple IF Statements

In the example on the slide, PL/SQL assigns values to the following variables, only if the condition
is TRUE:

v_job and v_deptno

If the condition is FALSE or NULL, PL/SQL ignores the statements in the IF block. In either case,
control resumes at the next statement in the program following the END IF.

Guidelines

• You can perform actions selectively based on conditions that are being met.

• When writing code, remember the spelling of the keywords:

– ELSIF is one word.

– END IF is two words.

• If the controlling Boolean condition is TRUE, the associated sequence of statements is
executed; if the controlling Boolean condition is FALSE or NULL, the associated sequence of
statements is passed over. Any number of ELSIF clauses are permitted.

• Indent the conditionally executed statements for clarity.

Oracle9i: PL/SQL Fundamentals 4-6

Copyright © Oracle Corporation, 2001. All rights reserved.4-6

Compound IF Statements

If the last name is Vargas and the salary is more than
6500:

Set department number to 60.

. . .
IF v_ename = ’Vargas’ AND salary > 6500 THEN

v_deptno := 60;
END IF;
. . .

Compound IF Statements

Compound IF statements use logical operators like AND and NOT. In the example on the slide, the
IF statement has two conditions to evaluate:

• Last name should be Vargas

• Salary should be greater than 6500

Only if both the above conditions are evaluated as TRUE, v_deptno is set to 60.

Consider the following example:

. . .

IF v_department = ’60’ OR v_hiredate > ’01-Dec-1999’ THEN

v_mgr := 101;

END IF;

. . .

In the above example , the IF statement has two conditions to evaluate:

• Department ID should be 60

• Hire date should be greater than 01-Dec-1999

If either of the above conditions are evaluated as TRUE, v_mgr is set to 101.

Oracle9i: PL/SQL Fundamentals 4-7

Copyright © Oracle Corporation, 2001. All rights reserved.4-7

IF-THEN-ELSE Statement Execution Flow

IF condition
TRUE

THEN actions
(including further IF

statements)

NOT TRUE

ELSE actions
(including further IF

statements)

IF-THEN-ELSE Statement Execution Flow

While writing an IF construct, if the condition is FALSE or NULL, you can use the ELSE clause to
carry out other actions. As with the simple IF statement, control resumes in the program from the
END IF clause. For example:

IF condition1 THEN
statement1;

ELSE
statement2;

END IF;

Nested IF Statements

Either set of actions of the result of the first IF statement can include further IF statements before
specific actions are performed. The THEN and ELSE clauses can include IF statements. Each nested
IF statement must be terminated with a corresponding END IF clause.

IF condition1 THEN
statement1;

ELSE
IF condition2 THEN

statement2;
END IF;

END IF;

Oracle9i: PL/SQL Fundamentals 4-8

Copyright © Oracle Corporation, 2001. All rights reserved.4-8

IF-THEN-ELSE Statements

Set a Boolean flag to TRUE if the hire date is greater
than five years; otherwise, set the Boolean flag to
FALSE.
DECLARE

v_hire_date DATE := ’12-Dec-1990’;
v_five_years BOOLEAN;

BEGIN
. . .
IF MONTHS_BETWEEN(SYSDATE,v_hire_date)/12 > 5 THEN

v_five_years := TRUE;
ELSE

v_five_years := FALSE;
END IF;
...

IF-THEN-ELSE Statements: Example

In the example on the slide, the MONTHS_BETWEEN function is used to find out the difference in
months between the current date and the v_hire_date variable. Because the result is the
difference of the number of months between the two dates, the resulting value is divided by 12 to
convert the result into years. If the resulting value is greater than 5, the Boolean flag is set to TRUE;
otherwise, the Boolean flag is set to FALSE.

Consider the following example: Check the value in the v_ename variable. If the value is King,
set the v_job variable to AD_PRES. Otherwise, set the v_job variable to ST_CLERK.

IF v_ename = ’King’ THEN
v_job := ’AD_PRES’;

ELSE
v_job := ’ST_CLERK’;

END IF;

Oracle9i: PL/SQL Fundamentals 4-9

Copyright © Oracle Corporation, 2001. All rights reserved.4-9

IF-THEN-ELSIF
Statement Execution Flow

IF condition
TRUE

THEN actions

NOT TRUE

ELSIF
condition

TRUE

THEN actions

NOT TRUE

ELSE
actions

IF-THEN-ELSIF Statement Execution Flow

Sometimes you want to select an action from several mutually exclusive alternatives. The third form
of IF statement uses the keyword ELSIF (not ELSEIF) to introduce additional conditions, as
follows:

IF condition1 THEN

sequence_of_statements1;

ELSIF condition2 THEN

sequence_of_statements2;

ELSE

sequence_of_statements3;

END IF;

Oracle9i: PL/SQL Fundamentals 4-10

IF-THEN-ELSIF Statement Execution Flow (continued)

If the first condition is false or null, the ELSIF clause tests another condition. An IF statement can
have any number of ELSIF clauses; the final ELSE clause is optional. Conditions are evaluated one
by one from top to bottom. If any condition is true, its associated sequence of statements is executed
and control passes to the next statement. If all conditions are false or null, the sequence in the ELSE
clause is executed. Consider the following example: Determine an employee’s bonus based upon the
employee’s department.

IF v_deptno = 10 THEN

v_bonus := 5000;

ELSIF v_deptno = 80 THEN

v_bonus := 7500;

ELSE

v_bonus := 2000;

END IF;

Note: In case of multiple IF–ELSIF statements only the first true statement is processed.

Oracle9i: PL/SQL Fundamentals 4-11

Copyright © Oracle Corporation, 2001. All rights reserved.4-11

IF-THEN-ELSIF Statements

For a given value, calculate a percentage of that value
based on a condition.

Example:

. . .
IF v_start > 100 THEN

v_start := 0.2 * v_start;
ELSIF v_start >= 50 THEN

v_start := 0.5 * v_start;
ELSE

v_start := 0.1 * v_start;
END IF;
. . .

IF-THEN-ELSIF Statements

When possible, use the ELSIF clause instead of nesting IF statements. The code is easier to read
and understand, and the logic is clearly identified. If the action in the ELSE clause consists purely of
another IF statement, it is more convenient to use the ELSIF clause. This makes the code clearer by
removing the need for nested END IF statements at the end of each further set of conditions and
actions.

Example
IF condition1 THEN
statement1;

ELSIF condition2 THEN
statement2;

ELSIF condition3 THEN
statement3;

END IF;

The example IF-THEN-ELSIF statement above is further defined as follows:

For a given value, calculate a percentage of the original value. If the value is more than 100, then the
calculated value is two times the starting value. If the value is between 50 and 100, then the
calculated value is 50% of the starting value. If the entered value is less than 50, then the calculated
value is 10% of the starting value.

Note: Any arithmetic expression containing null values evaluates to null.

Oracle9i: PL/SQL Fundamentals 4-12

Copyright © Oracle Corporation, 2001. All rights reserved.4-12

CASE Expressions

• A CASE expression selects a result and returns it.

• To select the result, the CASE expression uses an
expression whose value is used to select one of
several alternatives.

CASE selector
WHEN expression1 THEN result1
WHEN expression2 THEN result2
...
WHEN expressionN THEN resultN

[ELSE resultN+1;]
END;

CASE Expressions

A CASE expression selects a result and returns it. To select the result, the CASE expression uses a
selector, an expression whose value is used to select one of several alternatives. The selector is
followed by one or more WHEN clauses, which are checked sequentially. The value of the selector
determines which clause is executed. If the value of the selector equals the value of a WHEN-clause
expression, that WHEN clause is executed.

PL/SQL also provides a searched CASE expression, which has the form:

CASE

WHEN search_condition1 THEN result1

WHEN search_condition2 THEN result2

...

WHEN search_conditionN THEN resultN

[ELSE resultN+1;]

END;

/

A searched CASE expression has no selector. Also, its WHEN clauses contain search conditions that
yield a Boolean value, not expressions that can yield a value of any type.

Oracle9i: PL/SQL Fundamentals 4-13

Copyright © Oracle Corporation, 2001. All rights reserved.4-13

CASE Expressions: Example

SET SERVEROUTPUT ON
DECLARE

v_grade CHAR(1) := UPPER(’&p_grade’);
v_appraisal VARCHAR2(20);

BEGIN
v_appraisal :=

CASE v_grade
WHEN ’A’ THEN ’Excellent’
WHEN ’B’ THEN ’Very Good’
WHEN ’C’ THEN ’Good’
ELSE ’No such grade’

END;
DBMS_OUTPUT.PUT_LINE (’Grade: ’|| v_grade || ’

Appraisal ’ || v_appraisal);
END;
/

CASE Expressions: Example

In the example on the slide, the CASE expression uses the value in the v_grade variable as the
expression. This value is accepted from the user using a substitution variable. Based on the value
entered by the user, the CASE expression evaluates the value of the v_appraisal variable based
on the value of the v_grade value. The output of the above example will be as follows:

Oracle9i: PL/SQL Fundamentals 4-14

CASE Expressions: Example (continued)

If the example on the slide is written using a searched CASE expression it will look like this:
REM When prompted, supply p_grade = a in the code below.

DECLARE

v_grade CHAR(1) := UPPER(’&p_grade’);

v_appraisal VARCHAR2(20);

BEGIN

v_appraisal :=

CASE

WHEN v_grade = ’A’ THEN ’Excellent’

WHEN v_grade = ’B’ THEN ’Very Good’

WHEN v_grade = ’C’ THEN ’Good’

ELSE ’No such grade’

END;

DBMS_OUTPUT.PUT_LINE
(’Grade: ’|| v_grade || ’ Appraisal ’ || v_appraisal);

END;

/

Oracle9i: PL/SQL Fundamentals 4-15

Copyright © Oracle Corporation, 2001. All rights reserved.4-15

Handling Nulls

When working with nulls, you can avoid some
common mistakes by keeping in mind the following
rules:

• Simple comparisons involving nulls always yield
NULL.

• Applying the logical operator NOT to a null yields
NULL.

• In conditional control statements, if the condition
yields NULL, its associated sequence of
statements is not executed.

Handling Nulls

In the following example, you might expect the sequence of statements to execute because x and y
seem unequal. But, nulls are indeterminate. Whether or not x is equal to y is unknown. Therefore, the
IF condition yields NULL and the sequence of statements is bypassed.
x := 5;
y := NULL;
...
IF x != y THEN -- yields NULL, not TRUE

sequence_of_statements; -- not executed
END IF;

In the next example, you might expect the sequence of statements to execute because a and b seem
equal. But, again, that is unknown, so the IF condition yields NULL and the sequence of statements
is bypassed.
a := NULL;
b := NULL;
...
IF a = b THEN -- yields NULL, not TRUE

sequence_of_statements; -- not executed
END IF;

Oracle9i: PL/SQL Fundamentals 4-16

Copyright © Oracle Corporation, 2001. All rights reserved.4-16

Logic Tables

Build a simple Boolean condition with a comparison
operator.

NOT

TRUE

FALSE

NULL

OR

TRUE

FALSE

NULL

TRUE FALSE NULL

FALSE

TRUE

NULL

AND

TRUE

FALSE

NULL

TRUE FALSE NULL

TRUE

NULL NULL

NULL

FALSE FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUETRUE

FALSE

NULL NULL

NULL

Boolean Conditions with Logical Operators

You can build a simple Boolean condition by combining number, character, or date expressions with
comparison operators.

You can build a complex Boolean condition by combining simple Boolean conditions with the
logical operators AND, OR, and NOT. In the logic tables shown in the slide:

• FALSE takes precedence in an AND condition and TRUE takes precedence in an OR condition.

• AND returns TRUE only if both of its operands are TRUE.

• OR returns FALSE only if both of its operands are FALSE.

• NULL AND TRUE always evaluate to NULL because it is not known whether the second
operand evaluates to TRUE or not.

Note: The negation of NULL (NOT NULL) results in a null value because null values are
indeterminate.

Oracle9i: PL/SQL Fundamentals 4-17

Copyright © Oracle Corporation, 2001. All rights reserved.4-17

Boolean Conditions

What is the value of V_FLAG in each case?

V_REORDER_FLAG V_AVAILABLE_FLAG V_FLAG

TRUE TRUE

TRUE FALSE

NULL TRUE

NULL FALSE

v_flag := v_reorder_flag AND v_available_flag;

?

?

?

?

Building Logical Conditions
The AND logic table can help you evaluate the possibilities for the Boolean condition on the slide.

Answers

1. TRUE

2. FALSE

3. NULL

4. FALSE

Oracle9i: PL/SQL Fundamentals 4-18

Copyright © Oracle Corporation, 2001. All rights reserved.4-18

Iterative Control: LOOP Statements

• Loops repeat a statement or sequence of
statements multiple times.

• There are three loop types:
– Basic loop
– FOR loop

– WHILE loop

Iterative Control: LOOP Statements

PL/SQL provides a number of facilities to structure loops to repeat a statement or sequence of
statements multiple times.

Looping constructs are the second type of control structure. PL/SQL provides the following types of
loops:

• Basic loop that perform repetitive actions without overall conditions

• FOR loops that perform iterative control of actions based on a count

• WHILE loops that perform iterative control of actions based on a condition

Use the EXIT statement to terminate loops.

For more information, refer to PL/SQL User’s Guide and Reference, “Control Structures.”

Note: Another type of FOR LOOP, cursor FOR LOOP, is discussed in a subsequent lesson.

Oracle9i: PL/SQL Fundamentals 4-19

Copyright © Oracle Corporation, 2001. All rights reserved.4-19

Basic Loops

Syntax:

LOOP
statement1;
. . .
EXIT [WHEN condition];

END LOOP;

condition is a Boolean variable or
expression (TRUE, FALSE, or NULL);

-- delimiter

-- statements

-- EXIT statement

-- delimiter

Basic Loops
The simplest form of LOOP statement is the basic (or infinite) loop, which encloses a sequence of
statements between the keywords LOOP and END LOOP. Each time the flow of execution reaches
the END LOOP statement, control is returned to the corresponding LOOP statement above it. A basic
loop allows execution of its statement at least once, even if the condition is already met upon
entering the loop. Without the EXIT statement, the loop would be infinite.

The EXIT Statement

You can use the EXIT statement to terminate a loop. Control passes to the next statement after the
END LOOP statement. You can issue EXIT either as an action within an IF statement or as a
stand-alone statement within the loop. The EXIT statement must be placed inside a loop. In the
latter case, you can attach a WHEN clause to allow conditional termination of the loop. When the
EXIT statement is encountered, the condition in the WHEN clause is evaluated. If the condition
yields TRUE, the loop ends and control passes to the next statement after the loop. A basic loop can
contain multiple EXIT statements.

Oracle9i: PL/SQL Fundamentals 4-20

Copyright © Oracle Corporation, 2001. All rights reserved.4-20

DECLARE
v_country_id locations.country_id%TYPE := ’CA’;
v_location_id locations.location_id%TYPE;
v_counter NUMBER(2) := 1;
v_city locations.city%TYPE := ’Montreal’;

BEGIN
SELECT MAX(location_id) INTO v_location_id FROM locations
WHERE country_id = v_country_id;
LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_location_id + v_counter),v_city, v_country_id);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 3;

END LOOP;
END;
/

Basic Loops
Example:

Basic Loops (continued)

The basic loop example shown on the slide is defined as follows: Insert three new locations IDs for
the country code of CA and the city of Montreal.

Note: A basic loop allows execution of its statements at least once, even if the condition has been
met upon entering the loop, provided the condition is placed in the loop so that it is not checked until
after these statements. However, if the exit condition is placed at the top of the loop, before any of
the other executable statements, and that condition is true, the loop will exit and the statements will
never execute.

Oracle9i: PL/SQL Fundamentals 4-21

Copyright © Oracle Corporation, 2001. All rights reserved.4-21

WHILE Loops

Syntax:

Use the WHILE loop to repeat statements while a
condition is TRUE.

WHILE condition LOOP
statement1;
statement2;
. . .

END LOOP;

Condition is
evaluated at the
beginning of
each iteration.

WHILE Loops

You can use the WHILE loop to repeat a sequence of statements until the controlling condition is no
longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates when the
condition is FALSE. If the condition is FALSE at the start of the loop, then no further iterations are
performed.

In the syntax:

condition is a Boolean variable or expression (TRUE, FALSE, or NULL).

statement can be one or more PL/SQL or SQL statements.

If the variables involved in the conditions do not change during the body of the loop, then the
condition remains TRUE and the loop does not terminate.

Note: If the condition yields NULL, the loop is bypassed and control passes to the next statement.

Oracle9i: PL/SQL Fundamentals 4-22

Copyright © Oracle Corporation, 2001. All rights reserved.4-22

WHILE Loops

Example:

DECLARE
v_country_id locations.country_id%TYPE := ’CA’;
v_location_id locations.location_id%TYPE;
v_city locations.city%TYPE := ’Montreal’;
v_counter NUMBER := 1;

BEGIN
SELECT MAX(location_id) INTO v_location_id FROM locations
WHERE country_id = v_country_id;
WHILE v_counter <= 3 LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_location_id + v_counter), v_city, v_country_id);
v_counter := v_counter + 1;

END LOOP;
END;
/

WHILE Loops (continued)

In the example on the slide, three new locations IDs for the country code of CA and the city of
Montreal are being added.

With each iteration through the WHILE loop, a counter (v_counter) is incremented. If the number
of iterations is less than or equal to the number 3, the code within the loop is executed and a row is
inserted into the LOCATIONS table. After the counter exceeds the number of items for this location,
the condition that controls the loop evaluates to FALSE and the loop is terminated.

Oracle9i: PL/SQL Fundamentals 4-23

Copyright © Oracle Corporation, 2001. All rights reserved.4-23

FOR Loops

Syntax:

• Use a FOR loop to shortcut the test for the number
of iterations.

• Do not declare the counter; it is declared
implicitly.

• ’lower_bound .. upper_bound’ is required
syntax.

FOR counter IN [REVERSE]
lower_bound..upper_bound LOOP

statement1;
statement2;
. . .

END LOOP;

FOR Loops

FOR loops have the same general structure as the basic loop. In addition, they have a control
statement before the LOOP keyword to determine the number of iterations that PL/SQL performs. In
the syntax:

counter is an implicitly declared integer whose value automatically increases or
decreases (decreases if the REVERSE keyword is used) by 1 on each iteration of
the loop until the upper or lower bound is reached.

REVERSE causes the counter to decrement with each iteration from the upper bound to the
lower bound. (Note that the lower bound is still referenced first.)

lower_bound specifies the lower bound for the range of counter values.

upper_bound specifies the upper bound for the range of counter values.

Do not declare the counter; it is declared implicitly as an integer.

Note: The sequence of statements is executed each time the counter is incremented, as determined
by the two bounds. The lower bound and upper bound of the loop range can be literals, variables, or
expressions, but must evaluate to integers. The lower bound and upper bound are inclusive in the
loop range . If the lower bound of the loop range evaluates to a larger integer than the upper bound,
the sequence of statements will not be executed, provided REVERSE has not been used. For example
the following, statement is executed only once:
FOR i IN 3..3 LOOP statement1; END LOOP;

Oracle9i: PL/SQL Fundamentals 4-24

Copyright © Oracle Corporation, 2001. All rights reserved.4-24

FOR Loops

Insert three new locations IDs for the country code of CA
and the city of Montreal.
DECLARE

v_country_id locations.country_id%TYPE := ’CA’;
v_location_id locations.location_id%TYPE;
v_city locations.city%TYPE := ’Montreal’;

BEGIN
SELECT MAX(location_id) INTO v_location_id

FROM locations
WHERE country_id = v_country_id;

FOR i IN 1..3 LOOP
INSERT INTO locations(location_id, city, country_id)
VALUES((v_location_id + i), v_city, v_country_id);

END LOOP;
END;
/

FOR Loops (continued)

The example shown on the slide is defined as follows: Insert three new locations for the country
code of CA and the city of Montreal.

This is done using a FOR loop.

Oracle9i: PL/SQL Fundamentals 4-25

Copyright © Oracle Corporation, 2001. All rights reserved.4-25

FOR Loops

Guidelines

• Reference the counter within the loop only; it is
undefined outside the loop.

• Do not reference the counter as the target of an
assignment.

FOR Loops (continued)

The slide lists the guidelines to follow while writing a FOR Loop.

Note: While writing a FOR loop, the lower and upper bounds of a LOOP statement do not need to be
numeric literals. They can be expressions that convert to numeric values.

Example
DECLARE
v_lower NUMBER := 1;
v_upper NUMBER := 100;

BEGIN
FOR i IN v_lower..v_upper LOOP
...
END LOOP;

END;

Oracle9i: PL/SQL Fundamentals 4-26

Copyright © Oracle Corporation, 2001. All rights reserved.4-26

Guidelines While Using Loops

• Use the basic loop when the statements inside the
loop must execute at least once.

• Use the WHILE loop if the condition has to be
evaluated at the start of each iteration.

• Use a FOR loop if the number of iterations is known.

Guidelines While Using Loops

A basic loop allows execution of its statement at least once, even if the condition is already met upon
entering the loop. Without the EXIT statement, the loop would be infinite.

You can use the WHILE loop to repeat a sequence of statements until the controlling condition is no
longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates when the
condition is FALSE. If the condition is FALSE at the start of the loop, then no further iterations are
performed.

FOR loops have a control statement before the LOOP keyword to determine the number of iterations
that PL/SQL performs. Use a FOR loop if the number of iterations is predetermined.

Oracle9i: PL/SQL Fundamentals 4-27

Copyright © Oracle Corporation, 2001. All rights reserved.4-27

Nested Loops and Labels

• Nest loops to multiple levels.

• Use labels to distinguish between blocks and
loops.

• Exit the outer loop with the EXIT statement that
references the label.

Nested Loops and Labels
You can nest loops to multiple levels. You can nest FOR, WHILE, and basic loops within one
another. The termination of a nested loop does not terminate the enclosing loop unless an exception
was raised. However, you can label loops and exit the outer loop with the EXIT statement.

Label names follow the same rules as other identifiers. A label is placed before a statement, either on
the same line or on a separate line. Label loops by placing the label before the word LOOP within
label delimiters (<<label>>).

If the loop is labeled, the label name can optionally be included after the END LOOP statement for
clarity.

Oracle9i: PL/SQL Fundamentals 4-28

Copyright © Oracle Corporation, 2001. All rights reserved.4-28

Nested Loops and Labels

...
BEGIN

<<Outer_loop>>
LOOP
v_counter := v_counter+1;

EXIT WHEN v_counter>10;
<<Inner_loop>>
LOOP

...
EXIT Outer_loop WHEN total_done = ’YES’;
-- Leave both loops
EXIT WHEN inner_done = ’YES’;
-- Leave inner loop only
...

END LOOP Inner_loop;
...

END LOOP Outer_loop;
END;

Nested Loops and Labels (continued)

In the example on the slide, there are two loops. The outer loop is identified by the label,
<<Outer_Loop>> and the inner loop is identified by the label <<Inner_Loop>>. The
identifiers are placed before the word LOOP within label delimiters (<<label>>). The inner loop is
nested within the outer loop. The label names are included after the END LOOP statement for
clarity.

Oracle9i: PL/SQL Fundamentals 4-29

Copyright © Oracle Corporation, 2001. All rights reserved.4-29

Summary

In this lesson you should have learned how to:

Change the logical flow of statements by using
control structures.

• Conditional (IF statement)

• CASE Expressions

• Loops:
– Basic loop
– FOR loop

– WHILE loop

• EXIT statements

Summary

A conditional control construct checks for the validity of a condition and performs a corresponding
action accordingly. You use the IF construct to perform a conditional execution of statements.

An iterative control construct executes a sequence of statements repeatedly, as long as a specified
condition holds TRUE. You use the various loop constructs to perform iterative operations.

Oracle9i: PL/SQL Fundamentals 4-30

Copyright © Oracle Corporation, 2001. All rights reserved.4-30

Practice 4 Overview

This practice covers the following topics:

• Performing conditional actions using the IF
statement

• Performing iterative steps using the loop structure

Practice 4 Overview

In this practice, you create PL/SQL blocks that incorporate loops and conditional control structures.
The practices test the understanding of the student about writing various IF statements and LOOP
constructs.

Oracle9i: PL/SQL Fundamentals 4-31

Practice 4
1. Execute the command in the file lab04_1.sql to create the MESSAGES table. Write a

PL/SQL block to insert numbers into the MESSAGES table.

a. Insert the numbers 1 to 10, excluding 6 and 8.

b. Commit before the end of the block.

c. Select from the MESSAGES table to verify that your PL/SQL block worked.

2. Create a PL/SQL block that computes the commission amount for a given employee based
on the employee’s salary.

a. Use the DEFINE command to provide the employee ID. Pass the value to the PL/SQL
block through a iSQL*Plus substitution variable.

DEFINE p_empno = 100

b. If the employee’s salary is less than $5,000, display the bonus amount for the employee
as 10% of the salary.

c. If the employee’s salary is between $5,000 and $10,000, display the bonus amount for
the employee as 15% of the salary.

d. If the employee’s salary exceeds $10,000, display the bonus amount for the employee
as
20% of the salary.

e. If the employee’s salary is NULL, display the bonus amount for the employee as 0.

f. Test the PL/SQL block for each case using the following test cases, and check each
bonus amount.

Note: Include SET VERIFY OFF in your solution.

Employee Number Salary Resulting Bonus

100 24000 4800

149 10500 2100

178 7000 1050

Oracle9i: PL/SQL Fundamentals 4-32

Practice 4 (continued)

If you have time, complete the following exercises:

3. Create an EMP table that is a replica of the EMPLOYEES table. You can do this by executing
the
script lab04_3.sql. Add a new column, STARS, of VARCHAR2 data type and length of
50 to the EMP table for storing asterisk (*).

4. Create a PL/SQL block that rewards an employee by appending an asterisk in the STARS
column for every $1000 of the employee’s salary. Save your PL/SQL block in a file called
p4q4.sql by clicking on the Save Script button. Remember to save the script with a
.sql extension.

a. Use the DEFINE command to provide the employee ID. Pass the value to the PL/SQL
block through a iSQL*Plus substitution variable.

DEFINE p_empno=104

b. Initialize a v_asterisk variable that contains a NULL.

c. Append an asterisk to the string for every $1000 of the salary amount. For example, if
the employee has a salary amount of $8000, the string of asterisks should contain eight
asterisks. If the employee has a salary amount of $12500, the string of asterisks should
contain 13 asterisks.

d. Update the STARS column for the employee with the string of asterisks.

e. Commit.

f. Test the block for the following values:
DEFINE p_empno=174
DEFINE p_empno=176

g. Display the rows from the EMP table to verify whether your PL/SQL block has
executed successfully.

Note: SET VERIFY OFF in the PL/SQL block

Copyright © Oracle Corporation, 2001. All rights reserved.

Working with Composite
Data Types

Oracle9i: PL/SQL Fundamentals 5-2

Copyright © Oracle Corporation, 2001. All rights reserved.5-2

Objectives

After completing this lesson, you should be able to
do the following:

• Create user-defined PL/SQL records
• Create a record with the %ROWTYPE attribute

• Create an INDEX BY table

• Create an INDEX BY table of records

• Describe the difference between records, tables,
and tables of records

Lesson Aim

In this lesson, you learn more about composite data types and their uses.

Oracle9i: PL/SQL Fundamentals 5-3

Copyright © Oracle Corporation, 2001. All rights reserved.5-3

Composite Data Types

• Are of two types:
– PL/SQL RECORDs

– PL/SQL Collections

– INDEX BY Table

– Nested Table
– VARRAY

• Contain internal components

• Are reusable

RECORD and TABLE Data Types

Like scalar variables, composite variables have a data type. Composite data types (also known as
collections) are RECORD, TABLE, NESTED TABLE, and VARRAY. You use the RECORD data type to
treat related but dissimilar data as a logical unit. You use the TABLE data type to reference and
manipulate collections of data as a whole object. The NESTED TABLE and VARRAY data types are
covered in the Advanced PL/SQL course.

A record is a group of related data items stored as fields, each with its own name and data type. A
table contains a column and a primary key to give you array-like access to rows. After they are
defined, tables and records can be reused.

For more information, refer to PL/SQL User’s Guide and Reference, “Collections and Records.”

Oracle9i: PL/SQL Fundamentals 5-4

Copyright © Oracle Corporation, 2001. All rights reserved.5-4

PL/SQL Records

• Must contain one or more components of any scalar,
RECORD, or INDEX BY table data type, called fields

• Are similar in structure to records in a third
generation language (3GL)

• Are not the same as rows in a database table

• Treat a collection of fields as a logical unit

• Are convenient for fetching a row of data from a table
for processing

PL/SQL Records

A record is a group of related data items stored in fields, each with its own name and data type. For
example, suppose you have different kinds of data about an employee, such as name, salary, hire date,
and so on. This data is dissimilar in type but logically related. A record that contains such fields as the
name, salary, and hire date of an employee allows you to treat the data as a logical unit. When you
declare a record type for these fields, they can be manipulated as a unit.

• Each record defined can have as many fields as necessary.

• Records can be assigned initial values and can be defined as NOT NULL.

• Fields without initial values are initialized to NULL.

• The DEFAULT keyword can also be used when defining fields.

• You can define RECORD types and declare user-defined records in the declarative part of any
block, subprogram, or package.

• You can declare and reference nested records. One record can be the component of another
record.

Oracle9i: PL/SQL Fundamentals 5-5

Copyright © Oracle Corporation, 2001. All rights reserved.5-5

Creating a PL/SQL Record

Syntax:

Where field_declaration is:

TYPE type_name IS RECORD

(field_declaration[, field_declaration]…);

identifier type_name;

field_name {field_type | variable%TYPE

| table.column%TYPE | table%ROWTYPE}

[[NOT NULL] {:= | DEFAULT} expr]

Defining and Declaring a PL/SQL Record
To create a record, you define a RECORD type and then declare records of that type.

In the syntax:

type_name is the name of the RECORD type. (This identifier is used to declare
records.)

field_name is the name of a field within the record.

field_type is the data type of the field. (It represents any PL/SQL data type
except REF CURSOR. You can use the %TYPE and %ROWTYPE
attributes.)

expr is the field_type or an initial value.

The NOT NULL constraint prevents assigning nulls to those fields. Be sure to initialize NOT NULL
fields.

Oracle9i: PL/SQL Fundamentals 5-6

Copyright © Oracle Corporation, 2001. All rights reserved.5-6

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of
a new employee.

Example:
...
TYPE emp_record_type IS RECORD
(last_name VARCHAR2(25),
job_id VARCHAR2(10),
salary NUMBER(8,2));

emp_record emp_record_type;
...

Creating a PL/SQL Record

Field declarations are like variable declarations. Each field has a unique name and a specific data type.
There are no predefined data types for PL/SQL records, as there are for scalar variables. Therefore,
you must create the record type first and then declare an identifier using that type.

In the example on the slide, a EMP_RECORD_TYPE record type is defined to hold the values for the
last_name, job_id, and salary. In the next step, a record EMP_RECORD, of the type
EMP_RECORD_TYPE is declared.

The following example shows that you can use the %TYPE attribute to specify a field data type:

DECLARE

TYPE emp_record_type IS RECORD

(employee_id NUMBER(6) NOT NULL := 100,

last_name employees.last_name%TYPE,

job_id employees.job_id%TYPE);

emp_record emp_record_type;

...

Note: You can add the NOT NULL constraint to any field declaration to prevent assigning nulls to
that field. Remember, fields declared as NOT NULL must be initialized.

Oracle9i: PL/SQL Fundamentals 5-7

Copyright © Oracle Corporation, 2001. All rights reserved.5-7

PL/SQL Record Structure

Field1 (data type) Field2 (data type) Field3 (data type)

100 King AD_PRES

Field1 (data type) Field2 (data type) Field3 (data type)

Example:

employee_id number(6) last_name varchar2(25) job_id varchar2(10)

PL/SQL Record Structure

Fields in a record are accessed by name. To reference or initialize an individual field, use dot notation
and the following syntax:

record_name.field_name

For example, you reference the job_id field in the emp_record record as follows:

emp_record.job_id ...

You can then assign a value to the record field as follows:

emp_record.job_id := ’ST_CLERK’;

In a block or subprogram, user-defined records are instantiated when you enter the block or
subprogram and cease to exist when you exit the block or subprogram.

Oracle9i: PL/SQL Fundamentals 5-8

Copyright © Oracle Corporation, 2001. All rights reserved.5-8

The %ROWTYPE Attribute

• Declare a variable according to a collection of
columns in a database table or view.

• Prefix %ROWTYPE with the database table.

• Fields in the record take their names and data
types from the columns of the table or view.

Declaring Records with the %ROWTYPE Attribute

To declare a record based on a collection of columns in a database table or view, you use the
%ROWTYPE attribute. The fields in the record take their names and data types from the columns of the
table or view. The record can also store an entire row of data fetched from a cursor or cursor variable.

In the following example, a record is declared using %ROWTYPE as a data type specifier.

DECLARE
emp_record employees%ROWTYPE;
...

The emp_record record will have a structure consisting of the following fields, each representing a
column in the EMPLOYEES table.

Note: This is not code, but simply the structure of the composite variable.
(employee_id NUMBER(6),
first_name VARCHAR2(20),
last_name VARCHAR2(20),
email VARCHAR2(20),
phone_number VARCHAR2(20),
hire_date DATE,
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
manager_id NUMBER(6),
department_id NUMBER(4))

Oracle9i: PL/SQL Fundamentals 5-9

Declaring Records with the %ROWTYPE Attribute (continued)

Syntax

DECLARE

identifier reference%ROWTYPE;

where: identifier is the name chosen for the record as a whole.

reference is the name of the table, view, cursor, or cursor
variable on which the record is to be based. The table or view must
exist for this reference to be valid.

To reference an individual field, you use dot notation and the following syntax:

record_name.field_name

For example, you reference the commission_pct field in the emp_record record as follows:

emp_record.commission_pct

You can then assign a value to the record field as follows:

emp_record.commission_pct:= .35;

Assigning Values to Records
You can assign a list of common values to a record by using the SELECT or FETCH statement. Make
sure that the column names appear in the same order as the fields in your record. You can also assign
one record to another if they have the same data type. A user-defined record and a %ROWTYPE record
never have the same data type.

Oracle9i: PL/SQL Fundamentals 5-10

Copyright © Oracle Corporation, 2001. All rights reserved.5-10

Advantages of Using %ROWTYPE

• The number and data types of the underlying
database columns need not be known.

• The number and data types of the underlying
database column may change at run time.

• The attribute is useful when retrieving a row with
the SELECT * statement.

Advantages of Using %ROWTYPE

The advantages of using the %ROWTYPE attribute are listed on the slide. Use the %ROWTYPE attribute
when you are not sure about the structure of the underlying database table. Using this attribute also
ensures that the data types of the variables declared using this attribute change dynamically, in case the
underlying table is altered. This attribute is particularly useful when you want to retrieve an entire row
from a table. In the absence of this attribute, you would be forced to declare a variable for each of the
columns retrieved by the SELECT * statement.

Oracle9i: PL/SQL Fundamentals 5-11

Copyright © Oracle Corporation, 2001. All rights reserved.5-11

The %ROWTYPE Attribute

Examples:

Declare a variable to store the information about a
department from the DEPARTMENTS table.

Declare a variable to store the information about an
employee from the EMPLOYEES table.

dept_record departments%ROWTYPE;

emp_record employees%ROWTYPE;

The %ROWTYPE Attribute

The first declaration on the slide creates a record with the same field names and field data types as a
row in the DEPARTMENTS table. The fields are DEPARTMENT_ID, DEPARTMENT_NAME,
MANAGER_ID, and LOCATION_ID. The second declaration creates a record with the same field
names, field data types, and order as a row in the EMPLOYEES table. The fields are EMPLOYEE_ID,
FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE, JOB_ID, SALARY,
COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID.

Oracle9i: PL/SQL Fundamentals 5-12

The %ROWTYPE Attribute (continued)

In the following example, an employee is retiring. Information about a retired employee is added to a
table that holds information about retired employees. The user supplies the employee’s number. The
record of the employee specified by the user is retrieved from the EMPLOYEES and stored into the
emp_rec variable, which is declared using the %ROWTYPE attribute.

DEFINE employee_number = 124

DECLARE

emp_rec employees%ROWTYPE;

BEGIN

SELECT * INTO emp_rec

FROM employees

WHERE employee_id = &employee_number;

INSERT INTO retired_emps(empno, ename, job, mgr, hiredate,

leavedate, sal, comm, deptno)

VALUES (emp_rec.employee_id, emp_rec.last_name, emp_rec.job_id,

emp_rec.manager_id, emp_rec.hire_date, SYSDATE, emp_rec.salary,

emp_rec.commission_pct, emp_rec.department_id);

COMMIT;

END;

/

The record that is inserted into the RETIRED_EMPS table is shown below:

SELECT * FROM RETIRED_EMPS;

Oracle9i: PL/SQL Fundamentals 5-13

Copyright © Oracle Corporation, 2001. All rights reserved.5-13

INDEX BY Tables

• Are composed of two components:
– Primary key of data type BINARY_INTEGER

– Column of scalar or record data type

• Can increase in size dynamically because they are
unconstrained

INDEX BY Tables

Objects of the TABLE type are called INDEX BY tables. They are modeled as (but not the same as)
database tables. INDEX BY tables use a primary key to provide you with array-like access to rows.

A INDEX BY table:

• Is similar to an array

• Must contain two components:

– A primary key of data type BINARY_INTEGER that indexes the INDEX BY table

– A column of a scalar or record data type, which stores the INDEX BY table elements

• Can increase dynamically because it is unconstrained

Oracle9i: PL/SQL Fundamentals 5-14

Copyright © Oracle Corporation, 2001. All rights reserved.5-14

Creating an INDEX BY Table

Syntax:

TYPE type_name IS TABLE OF
{column_type | variable%TYPE
| table.column%TYPE} [NOT NULL]
| table.%ROWTYPE
[INDEX BY BINARY_INTEGER];

identifier type_name;

...
TYPE ename_table_type IS TABLE OF

employees.last_name%TYPE
INDEX BY BINARY_INTEGER;

ename_table ename_table_type;
...

Example:
Declare an INDEX BY table to store names.

Creating a INDEX BY Table

There are two steps involved in creating a INDEX BY table.

1. Declare a TABLE data type.

2. Declare a variable of that data type.

In the syntax:

The NOT NULL constraint prevents nulls from being assigned to the PL/ SQL table of that type. Do
not initialize the INDEX BY table.

INDEX-BY tables can have the following element types: BINARY_INTEGER, BOOLEAN, LONG,
LONG RAW, NATURAL, NATURALN,PLS_INTEGER, POSITIVE, POSITIVEN, SIGNTYPE, and
STRING. INDEX-BY tables are initially sparse. That enables you, for example, to store reference data
in an INDEX-BY table using a numeric primary key as the index.

type_name

is the name of the TABLE type. (It is a type specifier used in
subsequent declarations of PL/SQL tables.)

column_type is any scalar (scalar and composite) data type such as VARCHAR2,
DATE, NUMBER or %TYPE. (You can use the %TYPE attribute to
provide the column datatype.)

identifier is the name of the identifier that represents an entire PL/SQL table.

Oracle9i: PL/SQL Fundamentals 5-15

Copyright © Oracle Corporation, 2001. All rights reserved.5-15

INDEX BY Table Structure

Unique identifier Column

... ...

1 Jones

2 Smith

3 Maduro

... ...

BINARY_INTEGER Scalar

INDEX BY Table Structure

Like the size of a database table, the size of a INDEX BY table is unconstrained. That is, the number
of rows in a INDEX BY table can increase dynamically, so that your INDEX BY table grows as new
rows are added.

INDEX BY tables can have one column and a unique identifier to that one column, neither of which
can be named. The column can belong to any scalar or record data type, but the primary key must
belong to type BINARY_INTEGER. You cannot initialize an INDEX BY table in its declaration. An
INDEX BY table is not populated at the time of declaration. It contains no keys or no values. An
explicit executable statement is required to initialize (populate) the INDEX BY table.

Oracle9i: PL/SQL Fundamentals 5-16

Copyright © Oracle Corporation, 2001. All rights reserved.5-16

Creating an INDEX BY Table

DECLARE
TYPE ename_table_type IS TABLE OF

employees.last_name%TYPE
INDEX BY BINARY_INTEGER;

TYPE hiredate_table_type IS TABLE OF DATE
INDEX BY BINARY_INTEGER;

ename_table ename_table_type;
hiredate_table hiredate_table_type;

BEGIN
ename_table(1) := ’CAMERON’;
hiredate_table(8) := SYSDATE + 7;
IF ename_table.EXISTS(1) THEN
INSERT INTO ...

...

END;

/

Referencing an INDEX BY Table

Syntax:

INDEX_BY_table_name(primary_key_value)

where: primary_key_value belongs to type BINARY_INTEGER.

Reference the third row in an INDEX BY table ENAME_TABLE:

ename_table(3) ...

The magnitude range of a BINARY_INTEGER is -2147483647 ... 2147483647, so the primary key
value can be negative. Indexing does not need to start with 1.

Note: The table.EXISTS(i) statement returns TRUE if a row with index i is returned. Use the
EXISTS statement to prevent an error that is raised in reference to a nonexisting table element.

Oracle9i: PL/SQL Fundamentals 5-17

Copyright © Oracle Corporation, 2001. All rights reserved.5-17

Using INDEX BY Table Methods

The following methods make INDEX BY tables
easier to use:

– NEXT

– TRIM

– DELETE

– EXISTS

– COUNT

– FIRST and LAST

– PRIOR

Using INDEX BY Table Methods

A INDEX BY table method is a built-in procedure or function that operates on tables and is called
using dot notation.

Syntax: table_name.method_name[(parameters)]

Method Description

EXISTS(n) Returns TRUE if the nth element in a PL/SQL table exists

COUNT Returns the number of elements that a PL/SQL table currently
contains

FIRST
LAST

Returns the first and last (smallest and largest) index numbers in a
PL/SQL table. Returns NULL if the PL/SQL table is empty.

PRIOR(n) Returns the index number that precedes index n in a PL/SQL table
NEXT(n) Returns the index number that succeeds index n in a PL/SQL table
TRIM TRIM removes one element from the end of a PL/SQL table.

TRIM(n) removes n elements from the end of a PL/SQL table.
DELETE DELETE removes all elements from a PL/SQL table.

DELETE(n) removes the nth element from a PL/SQL table.
DELETE(m, n) removes all elements in the range m ... n from a
PL/SQL table.

Oracle9i: PL/SQL Fundamentals 5-18

Copyright © Oracle Corporation, 2001. All rights reserved.5-18

INDEX BY Table of Records

• Define a TABLE variable with a permitted PL/SQL
data type.

• Declare a PL/SQL variable to hold department
information.

Example:
DECLARE
TYPE dept_table_type IS TABLE OF

departments%ROWTYPE
INDEX BY BINARY_INTEGER;

dept_table dept_table_type;

-- Each element of dept_table is a record

INDEX BY Table of Records

At a given point of time, a INDEX BY table can store only the details of any one of the columns of a
database table. There is always a necessity to store all the columns retrieved by a query. The INDEX
BY table of records offer a solution to this. Because only one table definition is needed to hold
information about all of the fields of a database table, the table of records greatly increases the
functionality of INDEX BY tables.

Referencing a Table of Records
In the example given on the slide, you can refer to fields in the DEPT_TABLE record because each
element of this table is a record.

Syntax:

table(index).field

Example:

dept_table(15).location_id := 1700;

LOCATION_ID represents a field in DEPT_TABLE.

Note: You can use the %ROWTYPE attribute to declare a record that represents a row in a database
table. The difference between the %ROWTYPE attribute and the composite data type RECORD is that
RECORD allows you to specify the data types of fields in the record or to declare fields of your own.

Oracle9i: PL/SQL Fundamentals 5-19

Copyright © Oracle Corporation, 2001. All rights reserved.5-19

Example of INDEX BY Table of Records
SET SERVEROUTPUT ON
DECLARE

TYPE emp_table_type is table of
employees%ROWTYPE INDEX BY BINARY_INTEGER;

my_emp_table emp_table_type;
v_count NUMBER(3):= 104;

BEGIN
FOR i IN 100..v_count
LOOP

SELECT * INTO my_emp_table(i) FROM employees
WHERE employee_id = i;

END LOOP;
FOR i IN my_emp_table.FIRST..my_emp_table.LAST
LOOP

DBMS_OUTPUT.PUT_LINE(my_emp_table(i).last_name);
END LOOP;

END;

Example INDEX BY Table of Records

The example on the slide declares a INDEX BY table of records emp_table_type to temporarily
store the details of the employees whose EMPLOYEE_ID lies between 100 and 104. Using a loop, the
information of the employees from the EMPLOYEES table is retrieved and stored in the INDEX BY
table. Another loop is used to print the information regarding the last names from the INDEX BY
table. Observe the use of the FIRST and LAST methods in the example.

Oracle9i: PL/SQL Fundamentals 5-20

Copyright © Oracle Corporation, 2001. All rights reserved.5-20

Summary

In this lesson, you should have learned how to:

• Define and reference PL/SQL variables of
composite data types:
– PL/SQL records
– INDEX BY tables

– INDEX BY table of records

• Define a PL/SQL record by using the %ROWTYPE
attribute

Summary

A PL/SQL record is a collection of individual fields that represent a row in a table. By using records
you can group the data into one structure and then manipulate this structure as one entity or logical
unit. This helps reduce coding, and keeps the code easier to maintain and understand.

Like PL/SQL records, the table is another composite data type. INDEX BY tables are objects of a
TABLE type and look similar to database tables but with a slight difference. INDEX BY tables use a
primary key to give you array-like access to rows. The size of a INDEX BY table is unconstrained.
INDEX BY tables can have one column and a primary key, neither of which can be named. The
column can have any data type, but the primary key must be of the BINARY_INTEGER type.

A INDEX BY table of records enhances the functionality of INDEX BY tables, because only one
table definition is required to hold information about all the fields.

The following collection methods help generalize code, make collections easier to use, and make your
applications easier to maintain:

EXISTS, COUNT, LIMIT, FIRST and LAST, PRIOR and NEXT, TRIM , and DELETE

The %ROWTYPE is used to declare a compound variable whose type is the same as that of a row of a
database table.

Oracle9i: PL/SQL Fundamentals 5-21

Copyright © Oracle Corporation, 2001. All rights reserved.5-21

Practice 5 Overview

This practice covers the following topics:
• Declaring INDEX BY tables

• Processing data by using INDEX BY tables

• Declaring a PL/SQL record

• Processing data by using a PL/SQL record

Practice 5 Overview
In this practice, you define, create, and use INDEX BY tables and a PL/SQL record.

Oracle9i: PL/SQL Fundamentals 5-22

Practice 5

1. Write a PL/SQL block to print information about a given country.

a. Declare a PL/SQL record based on the structure of the COUNTRIES table.

b. Use the DEFINE command to provide the country ID. Pass the value to the PL/SQL
block through a iSQL*Plus substitution variable.

c. Use DBMS_OUTPUT.PUT_LINE to print selected information about the country. A
sample output is shown below.

d. Execute and test the PL/SQL block for the countries with the IDs CA, DE, UK, US.

2. Create a PL/SQL block to retrieve the name of each department from the DEPARTMENTS table
and print each department name on the screen, incorporating an INDEX BY table. Save the code
in a file called p5q2.sql by clicking the Save Script button. Save the script with a .sql
extension.

a. Declare an INDEX BY table, MY_DEPT_TABLE, to temporarily store the name of the
departments.

b. Using a loop, retrieve the name of all departments currently in the DEPARTMENTS table
and store them in the INDEX BY table. Use the following table to assign the value for
DEPARTMENT_ID based on the value of the counter used in the loop.

c. Using another loop, retrieve the department names from the INDEX BY table and print
them to the screen, using DBMS_OUTPUT.PUT_LINE. The output from the program is
shown on the next page.

COUNTER DEPARTMENT_ID

1 10

2 20

3 50

4 60

5 80

6 90

7 110

Oracle9i: PL/SQL Fundamentals 5-23

Practice 5 (continued)

Oracle9i: PL/SQL Fundamentals 5-24

Practice 5 (continued)

If you have time, complete the following exercise.

3. Modify the block you created in practice 2 to retrieve all information about each department
from the DEPARTMENTS table and print the information to the screen, incorporating an INDEX
BY table of records.

a. Declare an INDEX BY table, MY_DEPT_TABLE, to temporarily store the number,
name, and location of all the departments.

b. Using a loop, retrieve all department information currently in the DEPARTMENTS table
and store it in the INDEX BY table. Use the following table to assign the value for
DEPARTMENT_ID based on the value of the counter used in the loop. Exit the loop
when the counter reaches the value 7.

c. Using another loop, retrieve the department information from the INDEX BY table and
print it to the screen, using DBMS_OUTPUT.PUT_LINE. A sample output is shown.

COUNTER DEPARTMENT_ID

1 10

2 20

3 50

4 60

5 80

6 90

7 110

Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Explicit Cursors

Oracle9i: PL/SQL Fundamentals 6-2

Copyright © Oracle Corporation, 2001. All rights reserved.6-2

Objectives

After completing this lesson, you should be able to
do the following:

• Distinguish between an implicit and an explicit
cursor

• Discuss when and why to use an explicit cursor

• Use a PL/SQL record variable
• Write a cursor FOR loop

Lesson Aim

In this lesson, you learn the difference between implicit and explicit cursors. You also learn when and
why to use an explicit cursor. You may need to use a multiple-row SELECT statement in PL/SQL to
process many rows. To accomplish this, you declare and control explicit cursors.

Oracle9i: PL/SQL Fundamentals 6-3

Copyright © Oracle Corporation, 2001. All rights reserved.6-3

About Cursors

Every SQL statement executed by the Oracle Server
has an individual cursor associated with it:

• Implicit cursors: Declared for all DML and PL/SQL
SELECT statements

• Explicit cursors: Declared and named by the
programmer

Implicit and Explicit Cursors

The Oracle server uses work areas, called private SQL areas, to execute SQL statements and to store
processing information. You can use PL/SQL cursors to name a private SQL area and access its stored
information.

The Oracle server implicitly opens a cursor to process each SQL statement not associated with an
explicitly declared cursor. PL/SQL allows you to refer to the most recent implicit cursor as the SQL
cursor.

Cursor Type Description

Implicit Implicit cursors are declared by PL/SQL implicitly
for all DML and PL/SQL SELECT statements,
including queries that return only one row.

Explicit For queries that return more than one row, explicit
cursors are declared and named by the programmer
and manipulated through specific statements in the
block’s executable actions.

Oracle9i: PL/SQL Fundamentals 6-4

Copyright © Oracle Corporation, 2001. All rights reserved.6-4

Explicit Cursor Functions

Active set

Cursor

Table

100 King AD_PRES

101 Kochhar AD_VP

102 De Haan AD_VP

. . .

. . .

. . .

139 Seo ST_CLERK

140 Patel ST_CLERK

. . .

Explicit Cursors

Use explicit cursors to individually process each row returned by a multiple-row SELECT statement.

The set of rows returned by a multiple-row query is called the active set. Its size is the number of rows
that meet your search criteria. The diagram on the slide shows how an explicit cursor “points” to the
current row in the active set. This allows your program to process the rows one at a time.

A PL/SQL program opens a cursor, processes rows returned by a query, and then closes the cursor.
The cursor marks the current position in the active set.

Explicit cursor functions:

• Can process beyond the first row returned by the query, row by row

• Keep track of which row is currently being processed

• Allow the programmer to manually control explicit cursors in the PL/SQL block

Oracle9i: PL/SQL Fundamentals 6-5

Copyright © Oracle Corporation, 2001. All rights reserved.6-5

Controlling Explicit Cursors

• Create a
named
SQL area

DECLARE

• Identify
the active
set

OPEN

• Load the
current
row into
variables

FETCH

• Test for
existing
rows

EMPTY?

• Return to
FETCH if
rows are
found

No

• Release
the active
set

CLOSE
Yes

Explicit Cursors (continued)

Now that you have a conceptual understanding of cursors, review the steps to use them. The syntax for
each step can be found on the following pages.

Controlling Explicit Cursors

1. Declare the cursor by naming it and defining the structure of the query to be performed
within it.

2. Open the cursor. The OPEN statement executes the query and binds any variables that are
referenced. Rows identified by the query are called the active set and are now available for
fetching.

3. Fetch data from the cursor. In the flow diagram shown on the slide, after each fetch you test the
cursor for any existing row. If there are no more rows to process, then you must close the cursor.

4. Close the cursor. The CLOSE statement releases the active set of rows. It is now possible to
reopen the cursor to establish a fresh active set.

Oracle9i: PL/SQL Fundamentals 6-6

Copyright © Oracle Corporation, 2001. All rights reserved.6-6

Controlling Explicit Cursors

1. Open the cursor.

Cursor
pointer

1. Open the cursor

2. Fetch a row

3. Close the Cursor

Explicit Cursors (continued)
You use the OPEN, FETCH, and CLOSE statements to control a cursor.

The OPEN statement executes the query associated with the cursor, identifies the result set, and
positions the cursor before the first row.

Oracle9i: PL/SQL Fundamentals 6-7

Copyright © Oracle Corporation, 2001. All rights reserved.6-7

Controlling Explicit Cursors

Cursor
pointer

2. Fetch a row using the cursor.

Continue until empty.

1. Open the cursor

2. Fetch a row

3. Close the Cursor

Explicit Cursors (continued)
The FETCH statement retrieves the current row and advances the cursor to the next row until either
there are no more rows or until the specified condition is met.

Oracle9i: PL/SQL Fundamentals 6-8

Copyright © Oracle Corporation, 2001. All rights reserved.6-8

Controlling Explicit Cursors

Cursor
pointer

3. Close the cursor.

1. Open the cursor

2. Fetch a row

3. Close the Cursor

Explicit Cursors (continued)
Close the cursor when the last row has been processed. The CLOSE statement disables the cursor.

Oracle9i: PL/SQL Fundamentals 6-9

Copyright © Oracle Corporation, 2001. All rights reserved.6-9

Declaring the Cursor

Syntax:

• Do not include the INTO clause in the cursor
declaration.

• If processing rows in a specific sequence is
required, use the ORDER BY clause in the query.

CURSOR cursor_name IS

select_statement;

Declaring the Cursor
Use the CURSOR statement to declare an explicit cursor. You can reference variables within the query,
but you must declare them before the CURSOR statement.

In the syntax:

cursor_name is a PL/SQL identifier.

select_statement is a SELECT statement without an INTO clause.

Note
• Do not include the INTO clause in the cursor declaration because it appears later in the FETCH

statement.

• The cursor can be any valid ANSI SELECT statement, to include joins, and so on.

Oracle9i: PL/SQL Fundamentals 6-10

Copyright © Oracle Corporation, 2001. All rights reserved.6-10

Declaring the Cursor

Example:

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name
FROM employees;

CURSOR dept_cursor IS
SELECT *
FROM departments
WHERE location_id = 170;

BEGIN
...

Declaring the Cursor (continued)
In the example on the slide, the cursor emp_cursor is declared to retrieve the EMPLOYEE_ID and
LAST_NAME columns from the EMPLOYEES table. Similarly, the cursor DEPT_CURSOR is declared
to retrieve all the details for the department with the LOCATION_ID 170.

DECLARE

v_empno employees.employee_id%TYPE;

v_ename employees.last_name%TYPE;

CURSOR emp_cursor IS

SELECT employee_id, last_name

FROM employees;

BEGIN

. . .

Fetching the values retrieved by the cursor into the variables declared in the DECLARE section is
covered later in this lesson.

Oracle9i: PL/SQL Fundamentals 6-11

Copyright © Oracle Corporation, 2001. All rights reserved.6-11

Opening the Cursor

Syntax:

• Open the cursor to execute the query and identify
the active set.

• If the query returns no rows, no exception is
raised.

• Use cursor attributes to test the outcome after a
fetch.

OPEN cursor_name;

OPEN Statement

The OPEN statement executes the query associated with the cursor, identifies the result set, and
positions the cursor before the first row.

In the syntax:

cursor_name is the name of the previously declared cursor.

OPEN is an executable statement that performs the following operations:

1. Dynamically allocates memory for a context area that eventually contains crucial processing
information.

2. Parses the SELECT statement.

3. Binds the input variables—sets the value for the input variables by obtaining their memory
addresses.

4. Identifies the active set—the set of rows that satisfy the search criteria. Rows in the active set are
not retrieved into variables when the OPEN statement is executed. Rather, the FETCH statement
retrieves the rows.

5. Positions the pointer just before the first row in the active set.

For cursors declared using the FOR UPDATE clause, the OPEN statement also locks those rows. The
FOR UPDATE clause is discussed in a later lesson.

Note: If the query returns no rows when the cursor is opened, PL/SQL does not raise an exception.
However, you can test the status of the cursor after a fetch using the SQL%ROWCOUNT cursor attribute.

Oracle9i: PL/SQL Fundamentals 6-12

Copyright © Oracle Corporation, 2001. All rights reserved.6-12

Fetching Data from the Cursor

Syntax:

• Retrieve the current row values into variables.

• Include the same number of variables.

• Match each variable to correspond to the columns
positionally.

• Test to see whether the cursor contains rows.

FETCH cursor_name INTO [variable1, variable2, ...]

| record_name];

FETCH Statement

The FETCH statement retrieves the rows in the active set one at a time. After each fetch, the cursor
advances to the next row in the active set.

In the syntax:

cursor_name is the name of the previously declared cursor.

variable is an output variable to store the results.

record_name is the name of the record in which the retrieved data is stored. (The
record variable can be declared using the %ROWTYPE attribute.)

Guidelines:

• Include the same number of variables in the INTO clause of the FETCH statement as columns in
the SELECT statement, and be sure that the data types are compatible.

• Match each variable to correspond to the columns positionally.

• Alternatively, define a record for the cursor and reference the record in the FETCH INTO
clause.

• Test to see whether the cursor contains rows. If a fetch acquires no values, there are no rows left
to process in the active set and no error is recorded.

Note: The FETCH statement performs the following operations:

1. Reads the data for the current row into the output PL/SQL variables.

2. Advances the pointer to the next row in the identified set.

Oracle9i: PL/SQL Fundamentals 6-13

Copyright © Oracle Corporation, 2001. All rights reserved.6-13

Fetching Data from the Cursor

Example:

LOOP
FETCH emp_cursor INTO v_empno,v_ename;
EXIT WHEN ...;
...
-- Process the retrieved data

…
END LOOP;

FETCH Statement (continued)
You use the FETCH statement to retrieve the current row values into output variables. After the fetch,
you can manipulate the data in the variables. For each column value returned by the query associated
with the cursor, there must be a corresponding variable in the INTO list. Also, their data types must be
compatible.
Retrieve the first 10 employees one by one.
SET SERVEROUTPUT ON

DECLARE

v_empno employees.employee_id%TYPE;

v_ename employees.last_name%TYPE;

CURSOR emp_cursor IS

SELECT employee_id, last_name

FROM employees;

BEGIN

OPEN emp_cursor;

FOR i IN 1..10 LOOP

FETCH emp_cursor INTO v_empno, v_ename;

DBMS_OUTPUT.PUT_LINE (TO_CHAR(v_empno)
||’ ’|| v_ename);

END LOOP;

END ;

Oracle9i: PL/SQL Fundamentals 6-14

Copyright © Oracle Corporation, 2001. All rights reserved.6-14

Closing the Cursor

Syntax:

• Close the cursor after completing the processing
of the rows.

• Reopen the cursor, if required.

• Do not attempt to fetch data from a cursor after it
has been closed.

CLOSE cursor_name;

CLOSE Statement

The CLOSE statement disables the cursor, and the active set becomes undefined. Close the cursor after
completing the processing of the SELECT statement. This step allows the cursor to be reopened, if
required. Therefore, you can establish an active set several times.

In the syntax:

cursor_name is the name of the previously declared cursor.

Do not attempt to fetch data from a cursor after it has been closed, or the INVALID_CURSOR
exception will be raised.

Note: The CLOSE statement releases the context area.

Although it is possible to terminate the PL/SQL block without closing cursors, you should make it a
habit to close any cursor that you declare explicitly to free up resources.
There is a maximum limit to the number of open cursors per user, which is determined by the
OPEN_CURSORS parameter in the database parameter file. OPEN_CURSORS = 50 by default.

OPEN emp_cursor
FOR i IN 1..10 LOOP

FETCH emp_cursor INTO v_empno, v_ename;
...

END LOOP;
CLOSE emp_cursor;

END;

Oracle9i: PL/SQL Fundamentals 6-15

Copyright © Oracle Corporation, 2001. All rights reserved.6-15

Explicit Cursor Attributes

Obtain status information about a cursor.
Attribute Type Description

%ISOPEN Boolean Evaluates to TRUE if the cursor
is open

%NOTFOUND Boolean Evaluates to TRUE if the most
recent fetch does not return a row

%FOUND Boolean Evaluates to TRUE if the most
recent fetch returns a row;
complement of %NOTFOUND

%ROWCOUNT Number Evaluates to the total number of
rows returned so far

Explicit Cursor Attributes

As with implicit cursors, there are four attributes for obtaining status information about a cursor. When
appended to the cursor variable name, these attributes return useful information about the execution of
a data manipulation statement.

Note: You cannot reference cursor attributes directly in a SQL statement.

Oracle9i: PL/SQL Fundamentals 6-16

Copyright © Oracle Corporation, 2001. All rights reserved.6-16

The %ISOPEN Attribute

• Fetch rows only when the cursor is open.
• Use the %ISOPEN cursor attribute before

performing a fetch to test whether the cursor is
open.

Example:

IF NOT emp_cursor%ISOPEN THEN
OPEN emp_cursor;

END IF;
LOOP
FETCH emp_cursor...

The %ISOPEN Attribute

• You can fetch rows only when the cursor is open. Use the %ISOPEN cursor attribute to
determine whether the cursor is open.

• Fetch rows in a loop. Use cursor attributes to determine when to exit the loop.

• Use the %ROWCOUNT cursor attribute for the following:

– To retrieve an exact number of rows

– Fetch the rows in a numeric FOR loop

– Fetch the rows in a simple loop and determine when to exit the loop.

Note: %ISOPEN returns the status of the cursor: TRUE if open and FALSE if not.

Oracle9i: PL/SQL Fundamentals 6-17

Copyright © Oracle Corporation, 2001. All rights reserved.6-17

Controlling Multiple Fetches

• Process several rows from an explicit cursor using
a loop.

• Fetch a row with each iteration.

• Use explicit cursor attributes to test the success
of each fetch.

Controlling Multiple Fetches from Explicit Cursors

To process several rows from an explicit cursor, you typically define a loop to perform a fetch on each
iteration. Eventually all rows in the active set are processed, and an unsuccessful fetch sets the
%NOTFOUND attribute to TRUE. Use the explicit cursor attributes to test the success of each fetch
before any further references are made to the cursor. If you omit an exit criterion, an infinite loop
results.

For more information, see PL/SQL User’s Guide and Reference, “Interaction With Oracle.”

Oracle9i: PL/SQL Fundamentals 6-18

Copyright © Oracle Corporation, 2001. All rights reserved.6-18

The %NOTFOUND
and %ROWCOUNT Attributes

• Use the %ROWCOUNT cursor attribute to retrieve an
exact number of rows.

• Use the %NOTFOUND cursor attribute to determine
when to exit the loop.

The %NOTFOUND and %ROWCOUNT Attributes

%NOTFOUND

%NOTFOUND is the logical opposite of %FOUND. %NOTFOUND yields FALSE if the last fetch returned a
row, or TRUE if the last fetch failed to return a row. In the following example, you use %NOTFOUND to
exit a loop when FETCH fails to return a row:

LOOP

FETCH c1 INTO my_ename, my_sal, my_hiredate;

EXIT WHEN c1%NOTFOUND;

...

END LOOP;

Before the first fetch, %NOTFOUND evaluates to NULL. So, if FETCH never executes successfully, the
loop is never exited. That is because the EXIT WHEN statement executes only if its WHEN condition is
true. To be safe, use the following EXIT statement instead:

EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;

If a cursor is not open, referencing it with %NOTFOUND raises INVALID_CURSOR.

Oracle9i: PL/SQL Fundamentals 6-19

The %NOTFOUND and %ROWCOUNT Attributes (continued)

%ROWCOUNT

When its cursor or cursor variable is opened, %ROWCOUNT is zeroed. Before the first fetch,
%ROWCOUNT yields 0. Thereafter, it yields the number of rows fetched so far. The number is
incremented if the last fetch returned a row. In the next example, you use %ROWCOUNT to take action
if more than ten rows have been fetched:

LOOP

FETCH c1 INTO my_ename, my_deptno;

IF c1%ROWCOUNT > 10 THEN

...

END IF;

...

END LOOP;

If a cursor is not open, referencing it with %ROWCOUNT raises INVALID_CURSOR.

Oracle9i: PL/SQL Fundamentals 6-20

Copyright © Oracle Corporation, 2001. All rights reserved.6-20

Example

DECLARE
v_empno employees.employee_id%TYPE;
v_ename employees.last_name%TYPE;
CURSOR emp_cursor IS
SELECT employee_id, last_name
FROM employees;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO v_empno, v_ename;
EXIT WHEN emp_cursor%ROWCOUNT > 10 OR

emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE (TO_CHAR(v_empno)

||’ ’|| v_ename);
END LOOP;
CLOSE emp_cursor;

END ;

Example

The example on the slide retrieves the first ten employees one by one.

Note: Before the first fetch, %NOTFOUND evaluates to NULL. So if FETCH never executes
successfully, the loop is never exited. That is because the EXIT WHEN statement executes only if its
WHEN condition is true. To be safe, use the following EXIT statement:

EXIT WHEN emp_cursor%NOTFOUND OR emp_cursor%NOTFOUND IS NULL;

If using %ROWCOUNT, add a test for no rows in the cursor by using the %NOTFOUND attribute, because
the row count is not incremented if the fetch does not retrieve any rows.

Oracle9i: PL/SQL Fundamentals 6-21

Copyright © Oracle Corporation, 2001. All rights reserved.6-21

Cursors and Records

Process the rows of the active set by fetching values
into a PL/SQL RECORD.
DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name
FROM employees;

emp_record emp_cursor%ROWTYPE;
BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO emp_record;

...

100 King

emp_record
employee_id last_name

Cursors and Records
You have already seen that you can define records that have the structure of columns in a table. You
can also define a record based on the selected list of columns in an explicit cursor. This is convenient
for processing the rows of the active set, because you can simply fetch into the record. Therefore, the
values of the row are loaded directly into the corresponding fields of the record.
Example
Use a cursor to retrieve employee numbers and names and populate a database table, TEMP_LIST,
with this information.

DECLARE
CURSOR emp_cursor IS

SELECT employee_id, last_name
FROM employees;

emp_record emp_cursor%ROWTYPE;
BEGIN

OPEN emp_cursor;
LOOP

FETCH emp_cursor INTO emp_record;
EXIT WHEN emp_cursor%NOTFOUND;
INSERT INTO temp_list (empid, empname)
VALUES (emp_record.employee_id, emp_record.last_name);

END LOOP;
COMMIT;
CLOSE emp_cursor;

END;
/

Oracle9i: PL/SQL Fundamentals 6-22

Copyright © Oracle Corporation, 2001. All rights reserved.6-22

Syntax:

• The cursor FOR loop is a shortcut to process
explicit cursors.

• Implicit open, fetch, exit, and close occur.

• The record is implicitly declared.

Cursor FOR Loops

FOR record_name IN cursor_name LOOP

statement1;

statement2;

. . .

END LOOP;

Cursor FOR Loops

A cursor FOR loop processes rows in an explicit cursor. It is a shortcut because the cursor is opened,
rows are fetched once for each iteration in the loop, the loop exits when the last row is processed, and
the cursor is closed automatically. The loop itself is terminated automatically at the end of the iteration
where the last row is fetched.

In the syntax:

record_name is the name of the implicitly declared record.

cursor_name is a PL/SQL identifier for the previously declared cursor.

Guidelines

• Do not declare the record that controls the loop because it is declared implicitly.

• Test the cursor attributes during the loop, if required.

• Supply the parameters for a cursor, if required, in parentheses following the cursor name in the
FOR statement. More information on cursor parameters is covered in a subsequent lesson.

• Do not use a cursor FOR loop when the cursor operations must be handled explicitly.

Note: You can define a query at the start of the loop itself. The query expression is called a SELECT
substatement, and the cursor is internal to the FOR loop. Because the cursor is not declared with a
name, you cannot test its attributes.

Oracle9i: PL/SQL Fundamentals 6-23

Copyright © Oracle Corporation, 2001. All rights reserved.6-23

Cursor FOR Loops

Print a list of the employees who work for the sales
department.

DECLARE
CURSOR emp_cursor IS
SELECT last_name, department_id
FROM employees;

BEGIN
FOR emp_record IN emp_cursor LOOP

-- implicit open and implicit fetch occur
IF emp_record.department_id = 80 THEN
...

END LOOP; -- implicit close occurs
END;
/

Example

Retrieve employees one by one and print out a list of those employees currently working in the sales
department (DEPARTMENT_ID = 80). The example from the slide is completed below.

SET SERVEROUTPUT ON
DECLARE

CURSOR emp_cursor IS
SELECT last_name, department_id
FROM employees;

BEGIN
FOR emp_record IN emp_cursor LOOP

--implicit open and implicit fetch occur
IF emp_record.department_id = 80 THEN

DBMS_OUTPUT.PUT_LINE (’Employee ’ || emp_record.last_name
|| ’ works in the Sales Dept. ’);

END IF;
END LOOP; --implicit close and implicit loop exit

END ;
/

Oracle9i: PL/SQL Fundamentals 6-24

Copyright © Oracle Corporation, 2001. All rights reserved.6-24

Cursor FOR Loops Using Subqueries

No need to declare the cursor.

Example:

BEGIN
FOR emp_record IN (SELECT last_name, department_id

FROM employees) LOOP
-- implicit open and implicit fetch occur

IF emp_record.department_id = 80 THEN
...

END LOOP; -- implicit close occurs
END;

Cursor FOR Loops Using Subqueries

When you use a subquery in a FOR loop, you do not need to declare a cursor. This example does the
same thing as the one on the previous page. The complete code is given below:

SET SERVEROUTPUT ON
BEGIN
FOR emp_record IN (SELECT last_name, department_id

FROM employees) LOOP
--implicit open and implicit fetch occur

IF emp_record.department_id = 80 THEN
DBMS_OUTPUT.PUT_LINE (’Employee ’ || emp_record.last_name

|| ’ works in the Sales Dept. ’);
END IF;

END LOOP; --implicit close occurs
END ;
/

Oracle9i: PL/SQL Fundamentals 6-25

Example

Retrieve the first five employees with a job history.

SET SERVEROUTPUT ON

DECLARE

v_employee_id employees.employee_id%TYPE;

v_job_id employees.job_id%TYPE;

v_start_date DATE;

v_end_date DATE;

CURSOR emp_cursor IS

SELECT employee_id, job_id, start_date, end_date

FROM job_history

ORDER BY employee_id;

BEGIN

OPEN emp_cursor;

LOOP

FETCH emp_cursor

INTO v_employee_id, v_job_id, v_start_date, v_end_date;

DBMS_OUTPUT.PUT_LINE (’Employee #: ’ || v_employee_id ||

’ held the job of ’ || v_job_id || ’ FROM ’ ||

v_start_date || ’ TO ’ || v_end_date);

EXIT WHEN emp_cursor%ROWCOUNT > 4 OR

emp_cursor%NOTFOUND;

END LOOP;

CLOSE emp_cursor;

END;

/

Oracle9i: PL/SQL Fundamentals 6-26

Copyright © Oracle Corporation, 2001. All rights reserved.6-26

Summary

In this lesson you should have learned how to:

• Distinguish cursor types:
– Implicit cursors: used for all DML statements and

single-row queries

– Explicit cursors: used for queries of zero, one, or
more rows

• Manipulate explicit cursors

• Evaluate the cursor status by using cursor
attributes

• Use cursor FOR loops

Summary

Oracle uses work areas to execute SQL statements and store processing information. A PL/SQL
construct called a cursor allows you to name a work area and access its stored information. There are
two kinds of cursors: implicit and explicit. PL/SQL implicitly declares a cursor for all SQL data
manipulation statements, including queries that return only one row. For queries that return more than
one row, you can explicitly declare a cursor to process the rows individually.

Every explicit cursor and cursor variable has four attributes: %FOUND, %ISOPEN %NOTFOUND, and
%ROWCOUNT. When appended to the cursor or cursor variable, these attributes return useful
information about the execution of a data manipulation statement. You can use cursor attributes in
procedural statements but not in SQL statements.

Oracle9i: PL/SQL Fundamentals 6-27

Copyright © Oracle Corporation, 2001. All rights reserved.6-27

Practice 6 Overview

This practice covers the following topics:

• Declaring and using explicit cursors to query rows
of a table

• Using a cursor FOR loop

• Applying cursor attributes to test the cursor status

Practice 6 Overview

This practice applies your knowledge of cursors to process a number of rows from a table and populate
another table with the results using a cursor FOR loop.

Oracle9i: PL/SQL Fundamentals 6-28

Practice 6
1. Run the command in the script lab06_1.sql to create a new table for storing the salaries of

the employees.

CREATE TABLE top_dogs

(salary NUMBER(8,2));

2. Create a PL/SQL block that determines the top employees with respect to salaries.

a. Accept a number n from the user where n represents the number of top n earners from the
EMPLOYEES table. For example, to view the top five earners, enter 5.

Note: Use the DEFINE command to provide the value for n. Pass the value to the
PL/SQL block through a iSQL*Plus substitution variable.

b. In a loop use the iSQL*Plus substitution parameter created in step 1 and gather the
salaries of the top n people from the EMPLOYEES table. There should be no duplication
in the salaries. If two employees earn the same salary, the salary should be picked up
only once.

c. Store the salaries in the TOP_DOGS table.

d. Test a variety of special cases, such as n = 0 or where n is greater than the number
of employees in the EMPLOYEES table. Empty the TOP_DOGS table after each test. The
output shown represents the five highest salaries in the EMPLOYEES table.

3. Create a PL/SQL block that does the following:

a. Use the DEFINE command to provide the department ID. Pass the value to the PL/SQL
block through a iSQL*Plus substitution variable.

b. In a PL/SQL block, retrieve the last name, salary, and MANAGER ID of the employees
working in that department.

c. If the salary of the employee is less than 5000 and if the manager ID is either 101 or 124,
display the message <<last_name>> Due for a raise. Otherwise, display the
message <<last_name>> Not due for a raise.

Note: SET ECHO OFF to avoid displaying the PL/SQL code every time you execute the script.

Oracle9i: PL/SQL Fundamentals 6-29

Practice 6 (continued)

d. Test the PL/SQL block for the following cases:

Department ID Message

10 Whalen Due for a raise

20 Hartstein Not Due for a raise
Fay Not Due for a raise

50 Weiss Not Due for a raise
Fripp Due for a raise
Kaufling Due for a raise
Vollman Due for a raise
Mourgas Due for a raise
. . .
. . .

80 Russel Not Due for a raise
Partners Not Due for a raise
Errazuriz Not Due for a raise
Cambrault Not Due for a raise
. . .
. . .

Oracle9i: PL/SQL Fundamentals 6-30

Copyright © Oracle Corporation, 2001. All rights reserved.

Advanced Explicit Cursor
Concepts

Oracle9i: PL/SQL Fundamentals 7-2

Copyright © Oracle Corporation, 2001. All rights reserved.7-2

Objectives

After completing this lesson, you should be able to
do the following:

• Write a cursor that uses parameters
• Determine when a FOR UPDATE clause in a cursor

is required
• Determine when to use the WHERE CURRENT OF

clause

• Write a cursor that uses a subquery

Lesson Aim

In this lesson, you learn more about writing explicit cursors, specifically about writing cursors that use
parameters.

Oracle9i: PL/SQL Fundamentals 7-3

Copyright © Oracle Corporation, 2001. All rights reserved.7-3

Cursors with Parameters

Syntax:

• Pass parameter values to a cursor when the cursor
is opened and the query is executed.

• Open an explicit cursor several times with a
different active set each time.

CURSOR cursor_name
[(parameter_name datatype, ...)]

IS
select_statement;

OPEN cursor_name(parameter_value,.....) ;

Cursors with Parameters
You can pass parameters to the cursor in a cursor FOR loop. This means that you can open and close
an explicit cursor several times in a block, returning a different active set on each occasion. For each
execution, the previous cursor is closed and re-opened with a new set of parameters.

Each formal parameter in the cursor declaration must have a corresponding actual parameter in the
OPEN statement. Parameter data types are the same as those for scalar variables, but you do not give
them sizes. The parameter names are for references in the query expression of the cursor.

In the syntax:

cursor_name is a PL/SQL identifier for the previously declared cursor.

parameter_name is the name of a parameter.

parameter_name

datatype is a scalar data type of the parameter.

select_statement is a SELECT statement without the INTO clause.

When the cursor is opened, you pass values to each of the parameters by position or by name. You can
pass values from PL/SQL or host variables as well as from literals.

Note: The parameter notation does not offer greater functionality; it simply allows you to specify input
values easily and clearly. This is particularly useful when the same cursor is referenced repeatedly.

Oracle9i: PL/SQL Fundamentals 7-4

Copyright © Oracle Corporation, 2001. All rights reserved.7-4

Cursors with Parameters

Pass the department number and job title to the WHERE
clause, in the cursor SELECT statement.

DECLARE
CURSOR emp_cursor
(p_deptno NUMBER, p_job VARCHAR2) IS

SELECT employee_id, last_name
FROM employees
WHERE department_id = p_deptno
AND job_id = p_job;

BEGIN
OPEN emp_cursor (80, ’SA_REP’);
. . .
CLOSE emp_cursor;
OPEN emp_cursor (60, ’IT_PROG’);
. . .

END;

Cursors with Parameter

Parameter data types are the same as those for scalar variables, but you do not give them sizes. The
parameter names are for references in the cursor’s query. In the following example, a cursor is
declared and is defined with two parameters.

DECLARE

CURSOR emp_cursor(p_deptno NUMBER, p_job VARCHAR2) IS

SELECT ...

The following statements open the cursor and returns different active sets:

OPEN emp_cursor(60, v_emp_job);

OPEN emp_cursor(90, ’AD_VP’);

You can pass parameters to the cursor used in a cursor FOR loop:

DECLARE

CURSOR emp_cursor(p_deptno NUMBER, p_job VARCHAR2) IS

SELECT ...

BEGIN

FOR emp_record IN emp_cursor(50, ’ST_CLERK’) LOOP ...

Oracle9i: PL/SQL Fundamentals 7-5

Copyright © Oracle Corporation, 2001. All rights reserved.7-5

The FOR UPDATE Clause

Syntax:

• Use explicit locking to deny access for the
duration of a transaction.

• Lock the rows before the update or delete.

SELECT ...
FROM ...
FOR UPDATE [OF column_reference][NOWAIT];

The FOR UPDATE Clause

You may want to lock rows before you update or delete rows. Add the FOR UPDATE clause in the
cursor query to lock the affected rows when the cursor is opened. Because the Oracle Server releases
locks at the end of the transaction, you should not commit across fetches from an explicit cursor if
FOR UPDATE is used.

In the syntax:

column_reference is a column in the table against which the query is performed. (A
list of columns may also be used.)

NOWAIT returns an Oracle error if the rows are locked by another session

The FOR UPDATE clause is the last clause in a select statement, even after the ORDER BY, if one
exists. When querying multiple tables, you can use the FOR UPDATE clause to confine row locking to
particular tables. Rows in a table are locked only if the FOR UPDATE clause refers to a column in that
table. FOR UPDATE OF col_name(s) locks rows only in tables that contain the
col_name(s).

The SELECT ... FOR UPDATE statement identifies the rows that will be updated or deleted, then
locks each row in the result set. This is useful when you want to base an update on the existing values
in a row. In that case, you must make sure the row is not changed by another user before the update.

The optional NOWAIT keyword tells Oracle not to wait if requested rows have been locked by another
user. Control is immediately returned to your program so that it can do other work before trying again
to acquire the lock. If you omit the NOWAIT keyword , Oracle waits until the rows are available.

Oracle9i: PL/SQL Fundamentals 7-6

Copyright © Oracle Corporation, 2001. All rights reserved.7-6

The FOR UPDATE Clause

Retrieve the employees who work in department 80
and update their salary.

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name, department_name
FROM employees,departments
WHERE employees.department_id =

departments.department_id
AND employees.department_id = 80
FOR UPDATE OF salary NOWAIT;

The FOR UPDATE Clause (continued)

Note: If the Oracle server cannot acquire the locks on the rows it needs in a SELECT FOR UPDATE,
it waits indefinitely. You can use the NOWAIT clause in the SELECT FOR UPDATE statement and
test for the error code that returns because of failure to acquire the locks in a loop. You can retry
opening the cursor n times before terminating the PL/SQL block. If you have a large table, you can
achieve better performance by using the LOCK TABLE statement to lock all rows in the table.
However, when using LOCK TABLE, you cannot use the WHERE CURRENT OF clause and must use
the notation WHERE column = identifier.

It is not mandatory that the FOR UPDATE OF clause refer to a column, but it is recommended for
better readability and maintenance.

Note: The WHERE CURRENT OF clause is explained later in this lesson.

The FOR UPDATE clause identifies the rows that will be updated or deleted, then locks each row in
the result set. This is useful when you want to base an update on the existing values in a row. In that
case, you must make sure the row is not changed by another user before the update.

Oracle9i: PL/SQL Fundamentals 7-7

Copyright © Oracle Corporation, 2001. All rights reserved.7-7

The WHERE CURRENT OF Clause

Syntax:

• Use cursors to update or delete the current row.
• Include the FOR UPDATE clause in the cursor

query to lock the rows first.
• Use the WHERE CURRENT OF clause to reference

the current row from an explicit cursor.

WHERE CURRENT OF cursor ;

The WHERE CURRENT OF Clause

When referencing the current row from an explicit cursor, use the WHERE CURRENT OF clause.
This allows you to apply updates and deletes to the row currently being addressed, without the need to
explicitly reference the ROWID. You must include the FOR UPDATE clause in the cursor query so that
the rows are locked on OPEN.

In the syntax:

cursor is the name of a declared cursor. (The cursor must have been
declared with the FOR UPDATE clause.)

Oracle9i: PL/SQL Fundamentals 7-8

Copyright © Oracle Corporation, 2001. All rights reserved.7-8

The WHERE CURRENT OF Clause
DECLARE
CURSOR sal_cursor IS
SELECT e.department_id, employee_id, last_name, salary
FROM employees e, departments d
WHERE d.department_id = e.department_id
and d.department_id = 60
FOR UPDATE OF salary NOWAIT;
BEGIN
FOR emp_record IN sal_cursor
LOOP
IF emp_record.salary < 5000 THEN

UPDATE employees
SET salary = emp_record.salary * 1.10
WHERE CURRENT OF sal_cursor;

END IF;
END LOOP;
END;
/

The WHERE CURRENT OF Clause (continued)

Example

The slide example loops through each employee in department 60, and checks whether the salary is
less than 5000. If the salary is less than 5000, the salary is raised by 10%. The WHERE CURRENT OF
clause in the UPDATE statement refers to the currently fetched record. Observe that a table can be
updated with the WHERE CURRENT OF clause, even if there is a join in the cursor declaration.

Additionally, you can write a DELETE or UPDATE statement to contain the WHERE CURRENT OF
cursor_name clause to refer to the latest row processed by the FETCH statement. You can update rows
based on criteria from a cursor. When you use this clause, the cursor you reference must exist and
must contain the FOR UPDATE clause in the cursor query; otherwise, you will receive an error. This
clause allows you to apply updates and deletes to the currently addressed row without the need to
explicitly reference the ROWID pseudo column.

Oracle9i: PL/SQL Fundamentals 7-9

Copyright © Oracle Corporation, 2001. All rights reserved.7-9

Cursors with Subqueries

DECLARE
CURSOR my_cursor IS
SELECT t1.department_id, t1.department_name,

t2.staff
FROM departments t1, (SELECT department_id,

COUNT(*) AS STAFF
FROM employees
GROUP BY department_id) t2

WHERE t1.department_id = t2.department_id
AND t2.staff >= 3;

...

Example:

Cursors with Subqueries

A subquery is a query (usually enclosed by parentheses) that appears within another SQL data
manipulation statement. When evaluated, the subquery provides a value or set of values to the outer
query. Subqueries are often used in the WHERE clause of a select statement. They can also be used in
the FROM clause, creating a temporary data source for that query.

In this example, the subquery creates a data source consisting of department numbers and employee
head count in each department (known as the alias STAFF. A table alias, t2, refers to this temporary
data source in the FROM clause. When this cursor is opened, the active set will contain the department
number, department name, and total number of employees working for the department, provided there
are three or more employees working for the department.

Oracle9i: PL/SQL Fundamentals 7-10

Copyright © Oracle Corporation, 2001. All rights reserved.7-10

Summary

In this lesson, you should have learned how to:

• Return different active sets using cursors with
parameters.

• Define cursors with subqueries and correlated
subqueries.

• Manipulate explicit cursors with commands using
the:
– FOR UPDATE clause

– WHERE CURRENT OF clause

Summary

An explicit cursor can take parameters. In a query, you can specify a cursor parameter wherever a
constant appears. An advantage of using parameters is that you can decide the active set at run time.

PL/SQL provides a method to modify the rows that have been retrieved by the cursor. The method
consists of two parts. The FOR UPDATE clause in the cursor declaration and the WHERE CURRENT
OF clause in an UPDATE or DELETE statement.

Oracle9i: PL/SQL Fundamentals 7-11

Copyright © Oracle Corporation, 2001. All rights reserved.7-11

Practice 7 Overview

This practice covers the following topics:

• Declaring and using explicit cursors with
parameters

• Using a FOR UPDATE cursor

Practice 7 Overview

This practice applies your knowledge of cursors with parameters to process a number of rows from
multiple tables.

Oracle9i: PL/SQL Fundamentals 7-12

Practice 7

1. In a loop, use a cursor to retrieve the department number and the department name from the
DEPARTMENTS table for those departments whose DEPARTMENT_ID is less than 100. Pass the
department number to another cursor to retrieve from the EMPLOYEES table the details of
employee last name, job, hire date, and salary of those employees whose EMPLOYEE_ID is less
than 120 and who work in that department.

Oracle9i: PL/SQL Fundamentals 7-13

Practice 7 (continued)

2. Modify the code in sol04_4.sql to incorporate a cursor using the FOR UPDATE and
WHERE CURRENT OF functionality in cursor processing.

a. Define the host variables.

DEFINE p_empno=104

DEFINE p_empno=174

DEFINE p_empno=176

b. Execute the modified PL/SQL block

c. Execute the following command to check if your PL/SQL block has worked successfully:

SELECT employee_id,salary,stars
FROM EMP
WHERE employee_id IN (176,174,104);

Oracle9i: PL/SQL Fundamentals 7-14

Copyright © Oracle Corporation, 2001. All rights reserved.

Handling Exceptions

Oracle9i: PL/SQL Fundamentals 8-2

Copyright © Oracle Corporation, 2001. All rights reserved.8-2

Objectives

After completing this lesson, you should be able to

do the following:

• Define PL/SQL exceptions

• Recognize unhandled exceptions

• List and use different types of PL/SQL exception
handlers

• Trap unanticipated errors

• Describe the effect of exception propagation in
nested blocks

• Customize PL/SQL exception messages

Lesson Aim

In this lesson, you learn what PL/SQL exceptions are and how to deal with them using predefined,
nonpredefined, and user-defined exception handlers.

Oracle9i: PL/SQL Fundamentals 8-3

Copyright © Oracle Corporation, 2001. All rights reserved.8-3

Handling Exceptions with PL/SQL

• An exception is an identifier in PL/SQL that is raised
during execution.

• How is it raised?
– An Oracle error occurs.

– You raise it explicitly.

• How do you handle it?
– Trap it with a handler.

– Propagate it to the calling environment.

Overview

An exception is an identifier in PL/SQL that is raised during the execution of a block that terminates
its main body of actions. A block always terminates when PL/SQL raises an exception, but can you
specify an exception handler to perform final actions.

Two Methods for Raising an Exception

• An Oracle error occurs and the associated exception is raised automatically. For example, if
the error ORA-01403 occurs when no rows are retrieved from the database in a SELECT
statement, then PL/SQL raises the exception NO_DATA_FOUND.

• You raise an exception explicitly by issuing the RAISE statement within the block. The
exception being raised may be either user-defined or predefined.

Oracle9i: PL/SQL Fundamentals 8-4

Copyright © Oracle Corporation, 2001. All rights reserved.8-4

Handling Exceptions

Trap the exception

DECLARE

BEGIN

END;

Exception
is raised

EXCEPTION

Exception
is trapped

Propagate the exception

DECLARE

BEGIN

END;

Exception
is raised

EXCEPTION

Exception
is not
trapped

Exception
propagates to calling
environment

Trapping an Exception

If the exception is raised in the executable section of the block, processing branches to the
corresponding exception handler in the exception section of the block. If PL/SQL successfully
handles the exception, then the exception does not propagate to the enclosing block or environment.
The PL/SQL block terminates successfully.

Propagating an Exception

If the exception is raised in the executable section of the block and there is no corresponding
exception handler, the PL/SQL block terminates with failure and the exception is propagated to the
calling environment.

Oracle9i: PL/SQL Fundamentals 8-5

Copyright © Oracle Corporation, 2001. All rights reserved.8-5

Exception Types

• Predefined Oracle Server

• Nonpredefined Oracle Server

• User-defined

} Implicitly
raised

Explicitly raised

Exception Types

You can program for exceptions to avoid disruption at run time. There are three types of exceptions.

Note: Some application tools with client-side PL/SQL, such as Oracle Developer Forms, have their
own exceptions.

Exception Description Directions for Handling
Predefined Oracle
Server error

One of approximately 20
errors that occur most often
in PL/SQL code

Do not declare and allow the
Oracle server to raise them
implicitly

Nonpredefined
Oracle Server error

Any other standard Oracle
Server error

Declare within the declarative
section and allow the Oracle
Server to raise them implicitly

User-defined error A condition that the
developer determines is
abnormal

Declare within the declarative
section, and raise explicitly

Oracle9i: PL/SQL Fundamentals 8-6

Copyright © Oracle Corporation, 2001. All rights reserved.8-6

Trapping Exceptions

EXCEPTION

WHEN exception1 [OR exception2 . . .] THEN
statement1;
statement2;
. . .

[WHEN exception3 [OR exception4 . . .] THEN
statement1;
statement2;
. . .]

[WHEN OTHERS THEN
statement1;
statement2;
. . .]

Syntax:

Trapping Exceptions

You can trap any error by including a corresponding routine within the exception handling section of
the PL/SQL block. Each handler consists of a WHEN clause, which specifies an exception, followed
by a sequence of statements to be executed when that exception is raised.

In the syntax:

WHEN OTHERS Exception Handler

The exception-handling section traps only those exceptions that are specified; any other exceptions
are not trapped unless you use the OTHERS exception handler. This traps any exception not yet
handled. For this reason, OTHERS is the last exception handler that is defined.

The OTHERS handler traps all exceptions not already trapped. Some Oracle tools have their own
predefined exceptions that you can raise to cause events in the application. The OTHERS handler
also traps these exceptions.

exception is the standard name of a predefined exception or the name of a user-
defined exception declared within the declarative section.
 statement is one or more PL/SQL or SQL statements.

OTHERS is an optional exception-handling clause that traps unspecified
exceptions.

Oracle9i: PL/SQL Fundamentals 8-7

Copyright © Oracle Corporation, 2001. All rights reserved.8-7

Trapping Exceptions Guidelines

• The EXCEPTION keyword starts exception-handling
section.

• Several exception handlers are allowed.

• Only one handler is processed before leaving the
block.

• WHEN OTHERS is the last clause.

Guidelines

• Begin the exception-handling section of the block with the EXCEPTION keyword.

• Define several exception handlers, each with its own set of actions, for the block.

• When an exception occurs, PL/SQL processes only one handler before leaving the block.

• Place the OTHERS clause after all other exception-handling clauses.

• You can have only one OTHERS clause.

• Exceptions cannot appear in assignment statements or SQL statements.

Oracle9i: PL/SQL Fundamentals 8-8

Copyright © Oracle Corporation, 2001. All rights reserved.8-8

Trapping Predefined Oracle Server Errors

• Reference the standard name in the exception-
handling routine.

• Sample predefined exceptions:
– NO_DATA_FOUND

– TOO_MANY_ROWS

– INVALID_CURSOR

– ZERO_DIVIDE

– DUP_VAL_ON_INDEX

Trapping Predefined Oracle Server Errors

Trap a predefined Oracle Server error by referencing its standard name within the corresponding
exception-handling routine.

For a complete list of predefined exceptions, see PL/SQL User’s Guide and Reference, “Error
Handling.”

Note: PL/SQL declares predefined exceptions in the STANDARD package.

It is a good idea to always handle the NO_DATA_FOUND and TOO_MANY_ROWS exceptions, which
are the most common.

Oracle9i: PL/SQL Fundamentals 8-9

Predefined Exceptions

Exception Name Oracle
Server
Error
Number

Description

ACCESS_INTO_NULL ORA-
06530

Attempted to assign values to the attributes
of an uninitialized object

CASE_NOT_FOUND ORA-
06592

None of the choices in the WHEN clauses of
a CASE statement is selected, and there is
no ELSE clause.

COLLECTION_IS_NULL ORA-
06531

Attempted to apply collection methods
other than EXISTS to an uninitialized
nested table or varray

CURSOR_ALREADY_OPEN ORA-
06511

Attempted to open an already open cursor

DUP_VAL_ON_INDEX ORA-
00001

Attempted to insert a duplicate value

INVALID_CURSOR ORA-
01001

Illegal cursor operation occurred

INVALID_NUMBER ORA-
01722

Conversion of character string to number
fails

LOGIN_DENIED ORA-
01017

Logging on to Oracle with an invalid
username or password

NO_DATA_FOUND ORA-
01403

Single row SELECT returned no data

NOT_LOGGED_ON ORA-
01012

PL/SQL program issues a database call
without being connected to Oracle

PROGRAM_ERROR ORA-
06501

PL/SQL has an internal problem

ROWTYPE_MISMATCH ORA-
06504

Host cursor variable and PL/SQL cursor
variable involved in an assignment have
incompatible return types

Oracle9i: PL/SQL Fundamentals 8-10

Predefined Exceptions (continued)

Exception Name Oracle
Server
Error
Number

Description

STORAGE_ERROR ORA-
06500

PL/SQL ran out of memory or memory is
corrupted.

SUBSCRIPT_BEYOND_COUNT ORA-
06533

Referenced a nested table or varray element
using an index number larger than the number
of elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT ORA-
06532

Referenced a nested table or varray element
using an index number that is outside the legal
range (–1 for example)

SYS_INVALID_ROWID ORA-
01410

The conversion of a character string into a
universal ROWID fails because the character
string does not represent a valid ROWID.

TIMEOUT_ON_RESOURCE ORA-
00051

Time-out occurred while Oracle is waiting for
a resource.

TOO_MANY_ROWS ORA-
01422

Single-row SELECT returned more than one
row.

VALUE_ERROR ORA-
06502

Arithmetic, conversion, truncation, or size-
constraint error occurred.

ZERO_DIVIDE ORA-
01476

Attempted to divide by zero

Oracle9i: PL/SQL Fundamentals 8-11

Copyright © Oracle Corporation, 2001. All rights reserved.8-11

Predefined Exceptions

BEGIN
. . .
EXCEPTION

WHEN NO_DATA_FOUND THEN
statement1;
statement2;

WHEN TOO_MANY_ROWS THEN
statement1;

WHEN OTHERS THEN
statement1;
statement2;
statement3;

END;

Syntax:

Trapping Predefined Oracle Server Exceptions

When an exception is raised, normal execution of your PL/SQL block or subprogram stops and
control transfers to its exception-handling part, which is formatted as shown on the slide.

To catch raised exceptions, you write exception handlers. Each handler consists of a WHEN clause,
which specifies an exception, followed by a sequence of statements to be executed when that
exception is raised. These statements complete execution of the block or subprogram; control does
not return to where the exception was raised. In other words, you cannot resume processing where
you left off.

The optional OTHERS exception handler, which, if present, is always the last handler in a block or
subprogram, acts as the handler for all exceptions that are not named specifically. Thus, a block or
subprogram can have only one OTHERS handler. As the following example shows, use of the
OTHERS handler guarantees that no exception will go unhandled:

EXCEPTION

WHEN ... THEN

-- handle the error

WHEN ... THEN

-- handle the error

WHEN OTHERS THEN

-- handle all other errors

END;

Oracle9i: PL/SQL Fundamentals 8-12

Copyright © Oracle Corporation, 2001. All rights reserved.8-12

Trapping Nonpredefined Oracle
Server Errors

Declarative section

Declare

Name the
exception

Associate

Code the PRAGMA
EXCEPTION_INIT

Exception-handling
section

Reference

Handle the raised
exception

Trapping Nonpredefined Oracle Server Errors
You trap a nonpredefined Oracle server error by declaring it first, or by using the OTHERS handler.
The declared exception is raised implicitly. In PL/SQL, the PRAGMA EXCEPTION_INIT tells the
compiler to associate an exception name with an Oracle error number. That allows you to refer to
any internal exception by name and to write a specific handler for it.

Note: PRAGMA (also called pseudoinstructions) is the keyword that signifies that the statement is a
compiler directive, which is not processed when the PL/SQL block is executed. Rather, it directs the
PL/SQL compiler to interpret all occurrences of the exception name within the block as the
associated Oracle server error number.

Oracle9i: PL/SQL Fundamentals 8-13

Copyright © Oracle Corporation, 2001. All rights reserved.8-13

DEFINE p_deptno = 10

DECLARE
e_emps_remaining EXCEPTION;

PRAGMA EXCEPTION_INIT
(e_emps_remaining, -2292);

BEGIN

DELETE FROM departments

WHERE department_id = &p_deptno;

COMMIT;

EXCEPTION

WHEN e_emps_remaining THEN

DBMS_OUTPUT.PUT_LINE (’Cannot remove dept ’ ||

TO_CHAR(&p_deptno) || ’. Employees exist. ’);

END;

Nonpredefined Error

Trap for Oracle server error number –2292, an
integrity constraint violation.

1

2

3

Trapping a Nonpredefined Oracle Server Exception

1. Declare the name for the exception within the declarative section.

Syntax

exception EXCEPTION;

where: exception is the name of the exception.

2. Associate the declared exception with the standard Oracle server error number using the
PRAGMA EXCEPTION_INIT statement.

Syntax

PRAGMA EXCEPTION_INIT(exception, error_number);

where: exception is the previously declared exception.

error_number is a standard Oracle Server error number.

3. Reference the declared exception within the corresponding exception-handling routine.

Example

If there are employees in a department, print a message to the user that the department cannot be
removed.

Oracle9i: PL/SQL Fundamentals 8-14

Copyright © Oracle Corporation, 2001. All rights reserved.8-14

Functions for Trapping Exceptions

• SQLCODE: Returns the numeric value for the
error code

• SQLERRM: Returns the message associated
with the error number

Error-Trapping Functions

When an exception occurs, you can identify the associated error code or error message by using two
functions. Based on the values of the code or message, you can decide which subsequent action to
take based on the error.

SQLCODE returns the number of the Oracle error for internal exceptions. You can pass an error
number to SQLERRM, which then returns the message associated with the error number.

Example SQLCODE Values

Function Description

SQLCODE Returns the numeric value for the error code (You can assign it to a NUMBER
variable.)

SQLERRM Returns character data containing the message associated with the error
number

SQLCODE Value Description

0 No exception encountered

1 User-defined exception

+100 NO_DATA_FOUND exception

negative number Another Oracle server error number

Oracle9i: PL/SQL Fundamentals 8-15

Copyright © Oracle Corporation, 2001. All rights reserved.8-15

Functions for Trapping Exceptions

DECLARE

v_error_code NUMBER;
v_error_message VARCHAR2(255);

BEGIN
...
EXCEPTION
...

WHEN OTHERS THEN
ROLLBACK;
v_error_code := SQLCODE ;
v_error_message := SQLERRM ;

INSERT INTO errors

VALUES(v_error_code, v_error_message);
END;

Example:

Error-Trapping Functions (continued)

When an exception is trapped in the WHEN OTHERS exception handler, you can use a set of generic
functions to identify those errors. The example on the slide illustrates the values of SQLCODE and
SQLERRM being assigned to variables and then those variables being used in a SQL statement.

You cannot use SQLCODE or SQLERRM directly in a SQL statement. Instead, you must assign
their values to local variables, then use the variables in the SQL statement, as shown in the following
example:

DECLARE
err_num NUMBER;
err_msg VARCHAR2(100);

BEGIN
...

EXCEPTION
...
WHEN OTHERS THEN

err_num := SQLCODE;
err_msg := SUBSTR(SQLERRM, 1, 100);
INSERT INTO errors VALUES (err_num, err_msg);

END;

Oracle9i: PL/SQL Fundamentals 8-16

Copyright © Oracle Corporation, 2001. All rights reserved.8-16

Trapping User-Defined Exceptions

Declarative
section

Name the
exception.

Declare

Executable
section

Raise

Explicitly raise the
exception by using the
RAISE statement.

Exception-handling
section

Reference

Handle the raised
exception.

Trapping User-Defined Exceptions

PL/SQL allows you to define your own exceptions. User-defined PL/SQL exceptions must be:

• Declared in the declare section of a PL/SQL block

• Raised explicitly with RAISE statements

Oracle9i: PL/SQL Fundamentals 8-17

Copyright © Oracle Corporation, 2001. All rights reserved.8-17

User-Defined Exceptions

DECLARE
e_invalid_department EXCEPTION;

BEGIN
UPDATE departments
SET department_name = ’&p_department_desc’
WHERE department_id = &p_department_number;
IF SQL%NOTFOUND THEN
RAISE e_invalid_department;

END IF;
COMMIT;

EXCEPTION
WHEN e_invalid_department THEN
DBMS_OUTPUT.PUT_LINE(’No such department id.’);

END;

Example:

1

2

3

DEFINE p_department_desc = ’Information Technology ’
DEFINE P_department_number = 300

Trapping User-Defined Exceptions (continued)

You trap a user-defined exception by declaring it and raising it explicitly.

1. Declare the name for the user-defined exception within the declarative section.

Syntax:

exception EXCEPTION;

where: exception is the name of the exception

2. Use the RAISE statement to raise the exception explicitly within the executable section.

Syntax:

RAISE exception;

where: exception is the previously declared exception

3. Reference the declared exception within the corresponding exception-handling routine.

Example

This block updates the description of a department. The user supplies the department number and the
new name. If the user enters a department number that does not exist, no rows will be updated in the
DEPARTMENTS table. Raise an exception and print a message for the user that an invalid
department number was entered.

Note: Use the RAISE statement by itself within an exception handler to raise the same exception
back to the calling environment.

Oracle9i: PL/SQL Fundamentals 8-18

Copyright © Oracle Corporation, 2001. All rights reserved.8-18

Calling Environments

iSQL*Plus Displays error number and message
to screen

Procedure Builder

Displays error number and message
to screen

Oracle Developer
Forms

Accesses error number and message
in a trigger by means of the
ERROR_CODE and ERROR_TEXT
packaged functions

Precompiler
application

Accesses exception number through
the SQLCA data structure

An enclosing
PL/SQL block

Traps exception in exception-
handling routine of enclosing block

Propagating Exceptions

Instead of trapping an exception within the PL/SQL block, propagate the exception to allow the
calling environment to handle it. Each calling environment has its own way of displaying and
accessing errors.

Oracle9i: PL/SQL Fundamentals 8-19

Copyright © Oracle Corporation, 2001. All rights reserved.8-19

Propagating Exceptions

DECLARE

. . .

e_no_rows exception;

e_integrity exception;

PRAGMA EXCEPTION_INIT (e_integrity, -2292);

BEGIN

FOR c_record IN emp_cursor LOOP

BEGIN

SELECT ...

UPDATE ...

IF SQL%NOTFOUND THEN

RAISE e_no_rows;

END IF;

END;
END LOOP;

EXCEPTION

WHEN e_integrity THEN ...

WHEN e_no_rows THEN ...

END;

Subblocks can handle
an exception or pass
the exception to the
enclosing block.

Propagating an Exception in a Subblock

When a subblock handles an exception, it terminates normally, and control resumes in the enclosing
block immediately after the subblock END statement.

However, if PL/SQL raises an exception and the current block does not have a handler for that
exception, the exception propagates in successive enclosing blocks until it finds a handler. If none of
these blocks handle the exception, an unhandled exception in the host environment results.

When the exception propagates to an enclosing block, the remaining executable actions in that block
are bypassed.

One advantage of this behavior is that you can enclose statements that require their own exclusive
error handling in their own block, while leaving more general exception handling to the enclosing
block.

Observe in the example that the exceptions, e_no_rows and e_integrity, are declared in
the outer block. In the inner block, when the e_no_rows exception is raised, PL/SQL looks for the
exception in the sub block. Because the exception is not declared in the subblock, the exception
propagates to the outer block, where PL/SQL finds the declaration.

Oracle9i: PL/SQL Fundamentals 8-20

Copyright © Oracle Corporation, 2001. All rights reserved.8-20

The RAISE_APPLICATION_ERROR
Procedure

Syntax:

• You can use this procedure to issue user-defined
error messages from stored subprograms.

• You can report errors to your application and
avoid returning unhandled exceptions.

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

The RAISE_APPLICATION_ERROR Procedure

Use the RAISE_APPLICATION_ERROR procedure to communicate a predefined exception
interactively by returning a nonstandard error code and error message. With
RAISE_APPLICATION_ERROR, you can report errors to your application and avoid returning
unhandled exceptions.

In the syntax:

error_number is a user-specified number for the exception between –20000 and
–20999.

message is the user-specified message for the exception. It is a character
string up to 2,048 bytes long.

TRUE | FALSE is an optional Boolean parameter (If TRUE, the error is placed on
the stack of previous errors. If FALSE, the default, the error
replaces all previous errors.)

Oracle9i: PL/SQL Fundamentals 8-21

Copyright © Oracle Corporation, 2001. All rights reserved.8-21

The RAISE_APPLICATION_ERROR
Procedure

• Used in two different places:
– Executable section

– Exception section

• Returns error conditions to the user in a manner
consistent with other Oracle server errors

The RAISE_APPLICATION_ERROR Procedure (continued)

RAISE_APPLICATION_ERROR can be used in either (or both) the executable section and the
exception section of a PL/SQL program. The returned error is consistent with how the Oracle server
produces a predefined, nonpredefined, or user-defined error. The error number and message is
displayed to the user.

Oracle9i: PL/SQL Fundamentals 8-22

Copyright © Oracle Corporation, 2001. All rights reserved.8-22

RAISE_APPLICATION_ERROR

BEGIN
...

DELETE FROM employees
WHERE manager_id = v_mgr;

IF SQL%NOTFOUND THEN
RAISE_APPLICATION_ERROR(-20202,

’This is not a valid manager’);
END IF;
...

Executable section:

Exception section:
...
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20201,

’Manager is not a valid employee.’);
END;

Example
The slide shows that the RAISE_APPLICATION_ERROR procedure can be used in both the
executable and exception sections of a PL/SQL program.
Here is another example of a RAISE_APPLICATION_ERROR procedure that can be used in both the
executable and exception sections of a PL/SQL program:

DECLARE
e_name EXCEPTION;
PRAGMA EXCEPTION_INIT (e_name, -20999);

BEGIN
...
DELETE FROM employees

WHERE last_name = ’Higgins’;
IF SQL%NOTFOUND THEN

RAISE_APPLICATION_ERROR(-20999,’This is not a valid last
name’);
END IF;

EXCEPTION
WHEN e_name THEN

-- handle the error
...

END;
/

Oracle9i: PL/SQL Fundamentals 8-23

Copyright © Oracle Corporation, 2001. All rights reserved.8-23

Summary

• Exception types:
– Predefined Oracle server error

– Nonpredefined Oracle server error

– User-defined error

• Exception trapping

• Exception handling:
– Trap the exception within the PL/SQL block.

– Propagate the exception.

Summary

In PL/SQL, a warning or error condition is called an exception. Predefined exceptions are error
conditions that are defined by the Oracle server. Nonpredefined exceptions are any other standard
Oracle Server Error. User-defined exceptions are exceptions specific to your application. Examples
of predefined exceptions include division by zero (ZERO_DIVIDE) and out of memory
(STORAGE_ERROR). Exceptions without defined names can be assigned names, using the PRAGMA
EXCEPTION_INIT statement.

You can define exceptions of your own in the declarative part of any PL/SQL block, subprogram, or
package. For example, you can define an exception named INSUFFICIENT_FUNDS to flag
overdrawn bank accounts. User-defined exceptions must be given names.

When an error occurs, an exception is raised. That is, normal execution stops and control transfers to
the exception-handling part of your PL/SQL block or subprogram. Internal exceptions are raised
implicitly (automatically) by the run-time system. User-defined exceptions must be raised explicitly
by RAISE statements, which can also raise predefined exceptions.

To handle raised exceptions, you write separate routines called exception handlers. After an
exception handler runs, the current block stops executing and the enclosing block resumes with the
next statement. If there is no enclosing block, control returns to the host environment.

Oracle9i: PL/SQL Fundamentals 8-24

Copyright © Oracle Corporation, 2001. All rights reserved.8-24

Practice 8 Overview

This practice covers the following topics:

• Handling named exceptions

• Creating and invoking user-defined exceptions

Practice 8 Overview

In this practice, you create exception handlers for specific situations.

Oracle9i: PL/SQL Fundamentals 8-25

Practice 8

1. Write a PL/SQL block to select the name of the employee with a given salary value.

a. Use the DEFINE command to provide the salary.

b. Pass the value to the PL/SQL block through a iSQL*Plus substitution variable. If the salary
entered returns more than one row, handle the exception with an appropriate exception
handler and insert into the MESSAGES table the message “More than one employee with a
salary of <salary>.”

c. If the salary entered does not return any rows, handle the exception with an appropriate
exception handler and insert into the MESSAGES table the message “No employee with a
salary of <salary>.”

d. If the salary entered returns only one row, insert into the MESSAGES table the employee’s
name and the salary amount.

e. Handle any other exception with an appropriate exception handler and insert into the
MESSAGES table the message “Some other error occurred.”

f. Test the block for a variety of test cases. Display the rows from the MESSAGES table to
check whether the PL/SQL block has executed successfully. Some sample output is shown
below.

2. Modify the code in p3q3.sql to add an exception handler.

a. Use the DEFINE command to provide the department ID and department location. Pass the
values to the PL/SQL block through a iSQL*Plus substitution variables.

b. Write an exception handler for the error to pass a message to the user that the specified
department does not exist. Use a bind variable to pass the message to the user.

c. Execute the PL/SQL block by entering a department that does not exist.

Oracle9i: PL/SQL Fundamentals 8-26

Practice 8 (continued)

3. Write a PL/SQL block that prints the number of employees who earn plus or minus $100
of the salary value set for an iSQL*Plus substitution variable. Use the DEFINE command to
provide the salary value. Pass the value to the PL/SQL block through a iSQL*Plus substitution
variable.

a. If there is no employee within that salary range, print a message to the user indicating
that is the case. Use an exception for this case.

b. If there are one or more employees within that range, the message should indicate how
many employees are in that salary range.

c. Handle any other exception with an appropriate exception handler. The message should
indicate that some other error occurred.

DEFINE p_sal = 7000

DEFINE p_sal = 2500

DEFINE p_sal = 6500

Practice Solutions

A

Oracle9i: PL/SQL Fundamentals A-2

Practice 1 Solutions

1. Evaluate each of the following declarations. Determine which of them are not legal and explain
why.

a. DECLARE
v_id NUMBER(4);

Legal

b. DECLARE
v_x, v_y, v_z VARCHAR2(10);

Illegal because only one identifier per declaration is allowed.

c. DECLARE
v_birthdate DATE NOT NULL;

Illegal because the NOT NULL variable must be initialized.

d. DECLARE
v_in_stock BOOLEAN := 1;

Illegal because 1 is not a Boolean expression.
PL/SQL returns the following error:
PLS-00382: expression is of wrong type

Oracle9i: PL/SQL Fundamentals A-3

Practice 1 Solutions (continued)

2. In each of the following assignments, indicate whether the statement is valid and what the valid data
type of the result will be.

a. v_days_to_go := v_due_date - SYSDATE;

Valid; Number

b. v_sender := USER || ’: ’ || TO_CHAR(v_dept_no);

Valid; Character string

c. v_sum := $100,000 + $250,000;

Illegal; PL/SQL cannot convert special symbols from VARCHAR2 to NUMBER.

d. v_flag := TRUE;

Valid; Boolean

e. v_n1 := v_n2 > (2 * v_n3);

Valid; Boolean

f. v_value := NULL;

Valid; Any scalar data type

3. Create an anonymous block to output the phrase “My PL/SQL Block Works” to the screen.

VARIABLE g_message VARCHAR2(30)
BEGIN

:g_message := ’My PL/SQL Block Works’;
END;
/
PRINT g_message

Alternate Solution:

SET SERVEROUTPUT ON

BEGIN

DBMS_OUTPUT.PUT_LINE(’My PL/SQL Block Works’);

END;

/

Oracle9i: PL/SQL Fundamentals A-4

Practice 1 Solutions (continued)

If you have time, complete the following exercise:

4. Create a block that declares two variables. Assign the value of these PL/SQL variables to
iSQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block in a file named p1q4.sql, by clicking the Save
Script button. Remember to save the script with a .sql extension.

V_CHAR Character (variable length)

V_NUM Number

Assign values to these variables as follows:

Variable Value

---------- --

V_CHAR The literal ’42 is the answer’

V_NUM The first two characters from V_CHAR

VARIABLE g_char VARCHAR2(30)
VARIABLE g_num NUMBER
DECLARE
v_char VARCHAR2(30);
v_num NUMBER(11,2);

BEGIN
v_char := ’42 is the answer’;
v_num := TO_NUMBER(SUBSTR(v_char,1,2));
:g_char := v_char;
:g_num := v_num;

END;
/
PRINT g_char
PRINT g_num

Oracle9i: PL/SQL Fundamentals A-5

Practice 2 Solutions

DECLARE

v_weight NUMBER(3) := 600;

v_message VARCHAR2(255) := ’Product 10012’;

BEGIN

/*SUBBLOCK*/

DECLARE

v_weight NUMBER(3) := 1;

v_message VARCHAR2(255) := ’Product 11001’;

v_new_locn VARCHAR2(50) := ’Europe’;

BEGIN

v_weight := v_weight + 1;

v_new_locn := ’Western ’ || v_new_locn;

END;

v_weight := v_weight + 1;

v_message := v_message || ’ is in stock’;

v_new_locn := ’Western ’ || v_new_locn;

END;

/

1. Evaluate the PL/SQL block above and determine the data type and value of each of the following
variables according to the rules of scoping.

a. The value of V_WEIGHT at position 1 is:

2

The data type is NUMBER.

b. The value of V_NEW_LOCN at position 1 is:

Western Europe

The data type is VARCHAR2.

c. The value of V_WEIGHT at position 2 is:

601

The data type is NUMBER.

d. The value of V_MESSAGE at position 2 is:

Product 10012 is in stock

The data type is VARCHAR2.

e. The value of V_NEW_LOCN at position 2 is:

Illegal because v_new_locn is not visible outside the subblock.

2

1

Oracle9i: PL/SQL Fundamentals A-6

Practice 2 Solutions (continued)

Scope Example

DECLARE

v_customer VARCHAR2(50) := ’Womansport’;

v_credit_rating VARCHAR2(50) := ’EXCELLENT’;

BEGIN

DECLARE

v_customer NUMBER(7) := 201;

v_name VARCHAR2(25) := ’Unisports’;

BEGIN

v_customer v_name v_credit_rating

END;

v_customer v_name v_credit_rating

END;

/

Oracle9i: PL/SQL Fundamentals A-7

Practice 2 Solutions (continued)

2. Suppose you embed a subblock within a block, as shown on the previous page. You declare two
variables, V_CUSTOMER and V_CREDIT_RATING, in the main block. You also declare two
variables, V_CUSTOMER and V_NAME, in the subblock. Determine the values and data types for
each of the following cases.

a. The value of V_CUSTOMER in the subblock is:

201

The data type is NUMBER.

b. The value of V_NAME in the subblock is:

Unisports and

The data type is VARCHAR2.

c. The value of V_CREDIT_RATING in the subblock is:

EXCELLENT

The data type is VARCHAR2.

d. The value of V_CUSTOMER in the main block is:

Womansport

The data type is VARCHAR2.

e. The value of V_NAME in the main block is:

V_NAME is not visible in the main block and you would see an error.

f. The value of V_CREDIT_RATING in the main block is:

EXCELLENT

The data type is VARCHAR2.

Oracle9i: PL/SQL Fundamentals A-8

Practice 2 Solutions (continued)

3. Create and execute a PL/SQL block that accepts two numbers through iSQL*Plus substitution
variables.

a. Use the DEFINE command to provide the two values.

DEFINE p_num1=2 -- example

DEFINE p_num2=4 -- example

b. Pass these two values defined in step a above, to the PL/SQL block through iSQL*Plus
substitution variables. The first number should be divided by the second number and have the
second number added to the result. The result should be stored in a PL/SQL variable and printed
on the screen.

Note: SET VERIFY OFF in the PL/SQL block.

SET ECHO OFF

SET VERIFY OFF

SET SERVEROUTPUT ON

DECLARE

v_num1 NUMBER(9,2) := &p_num1;

v_num2 NUMBER(9,2) := &p_num2;

v_result NUMBER(9,2) ;

BEGIN

v_result := (v_num1/v_num2) + v_num2;

/* Printing the PL/SQL variable */

DBMS_OUTPUT.PUT_LINE (v_result);

END;

/

SET SERVEROUTPUT OFF

SET VERIFY ON

SET ECHO ON

Oracle9i: PL/SQL Fundamentals A-9

Practice 2 Solutions (continued)

4. Build a PL/SQL block that computes the total compensation for one year.

a. The annual salary and the annual bonus percentage values are defined using the DEFINE
command.

b. Pass the values defined in the above step to the PL/SQL block through iSQL*Plus substitution
variables. The bonus must be converted from a whole number to a decimal (for example, 15 to
.15). If the salary is null, set it to zero before computing the total compensation. Execute the
PL/SQL block. Reminder: Use the NVL function to handle null values.

Note: Total compensation is the sum of the annual salary and the annual bonus.

Method 1: When an iSQL*Plus variable is used:

a. VARIABLE g_total NUMBER
DEFINE p_salary=50000
DEFINE p_bonus=10

b. SET VERIFY OFF

DECLARE
v_salary NUMBER := &p_salary;
v_bonus NUMBER := &p_bonus;

BEGIN
:g_total := NVL(v_salary, 0) * (1 + NVL(v_bonus, 0) / 100);

END;
/
PRINT g_total
SET VERIFY ON

Alternate Solution: When a PL/SQL variable is used:

a. DEFINE p_salary=50000
DEFINE p_bonus=10

b. SET VERIFY OFF
SET SERVEROUTPUT ON

DECLARE
v_salary NUMBER := &p_salary;
v_bonus NUMBER := &p_bonus;

BEGIN
dbms_output.put_line(TO_CHAR(NVL(v_salary, 0) *

(1 + NVL(v_bonus, 0) / 100)));
END;
/
SET VERIFY ON
SET SERVEROUTPUT OFF

Oracle9i: PL/SQL Fundamentals A-10

Practice 3 Solutions

1. Create a PL/SQL block that selects the maximum department number in the DEPARTMENTS table and
stores it in an iSQL*Plus variable. Print the results to the screen. Save your PL/SQL block in a file
named p3q1.sql by clicking the Save Script button. Save the script with a .sql extension.

VARIABLE g_max_deptno NUMBER

DECLARE

v_max_deptno NUMBER;

BEGIN

SELECT max(department_id)

INTO v_max_deptno

FROM departments;

:g_max_deptno := v_max_deptno;

END;

/

PRINT g_max_deptno

Alternate Solution:

SET SERVEROUTPUT ON

DECLARE

v_max_deptno NUMBER;

BEGIN

SELECT MAX(department_id) INTO v_max_deptno FROM departments;

dbms_output.put_line(v_max_deptno);

END;

/

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the DEPARTMENTS
table. Save the PL/SQL block in a file named p3q2.sql by clicking the Save Script button. Save the
script with a .sql extension.

a. Use the DEFINE command to provide the department name. Name the new department Education.

SET ECHO OFF

SET VERIFY OFF

DEFINE p_dname = Education

b. Pass the value to the PL/SQL block through a iSQL*Plus substitution variable. Rather than printing
the department number retrieved from exercise 1, add 10 to it and use it as the department number for
the new department.

c. Leave the location number as null for now.

Oracle9i: PL/SQL Fundamentals A-11

Practice 3 Solutions (continued)
DECLARE

v_max_deptno departments.department_id%TYPE;

BEGIN

SELECT MAX(department_id) + 10

INTO v_max_deptno

FROM departments;

INSERT INTO departments (department_id, department_name,
location_id)

VALUES (v_max_deptno, ’&p_dname’, NULL);

COMMIT;

END;

/
SET VERIFY ON
SET ECHO ON

d. Execute the PL/SQL block.
e. Display the new department that you created.

SELECT *

FROM departments

WHERE department_name = ’Education’;

3. Create a PL/SQL block that updates the location ID for the new department that you added in the
previous practice. Save your PL/SQL block in a file named p3q3.sql by clicking the Save
Script button. Save the script with a .sql extension.

a. Use an iSQL*Plus variable for the department ID number that you added in the previous practice.
b. Use the DEFINE command to provide the location ID. Name the new location ID 1700.

SET VERIFY OFF
DEFINE p_deptno = 280
DEFINE p_loc = 1700

c. Pass the value to the PL/SQL block through a iSQL*Plus substitution variable. Test the PL/SQL
block.
BEGIN
UPDATE departments
SET location_id = &p_loc
WHERE department_id = &p_deptno;
COMMIT;

END;
/
SET VERIFY ON

d. Display the department that you updated.
SELECT * FROM departments

WHERE department_id = &p_deptno;

Oracle9i: PL/SQL Fundamentals A-12

Practice 3 Solutions (continued)

4. Create a PL/SQL block that deletes the department that you created in exercise 2. Save the PL/SQL
block in a file named p3q4.sql by clicking the Save Script button. Save the script with a .sql
extension.

a. Use the DEFINE command to provide the department ID.

SET VERIFY OFF

VARIABLE g_result VARCHAR2(40)

DEFINE p_deptno = 280

b. Pass the value to the PL/SQL block through a iSQL*Plus substitution variable Print to the screen the
number of rows affected.

c. Test the PL/SQL block.

DECLARE

v_result NUMBER(2);

BEGIN

DELETE

FROM departments

WHERE department_id = &p_deptno;

v_result := SQL%ROWCOUNT;

:g_result := (TO_CHAR(v_result) || ’ row(s) deleted.’);

COMMIT;

END;

/

PRINT g_result

SET VERIFY ON

d. Confirm that the department has been deleted.

SELECT *
FROM departments
WHERE department_id = 280;

Oracle9i: PL/SQL Fundamentals A-13

Practice 4 Solutions

1. Execute the command in the file lab04_1.sql to create the MESSAGES table. Write a PL/SQL
block to insert numbers into the MESSAGES table.

CREATE TABLE messages (results VARCHAR2 (60));

a. Insert the numbers 1 to 10, excluding 6 and 8.

b. Commit before the end of the block.
BEGIN
FOR i IN 1..10 LOOP
IF i = 6 or i = 8 THEN
null;

ELSE
INSERT INTO messages(results)
VALUES (i);
END IF;
COMMIT;

END LOOP;
END;
/

Note: i is being implicitly converted. A better way to code would be to explicitly convert the NUMBER
to VARCHAR2.

c. Select from the MESSAGES table to verify that your PL/SQL block worked.

SELECT *

FROM messages;

2. Create a PL/SQL block that computes the commission amount for a given employee based
on the employee’s salary.

a. Use the DEFINE command to provide the employee ID. Pass the value to the PL/SQL block
through a iSQL*Plus substitution variable.

SET SERVEROUTPUT ON

SET VERIFY OFF

DEFINE p_empno = 100

b. If the employee’s salary is less than $5,000, display the bonus amount for the employee
as 10% of the salary.

c. If the employee’s salary is between $5,000 and $10,000, display the bonus amount for the
employee as 15% of the salary.

d. If the employee’s salary exceeds $10,000, display the bonus amount for the employee as
20% of the salary.

e. If the employee’s salary is NULL, display the bonus amount for the employee as 0.

f. Test the PL/SQL block for each case using the following test cases, and check each
bonus amount.

Note: Include SET VERIFY OFF in your solution.

Oracle9i: PL/SQL Fundamentals A-14

Practice 4 Solutions (continued)

DECLARE

v_empno employees.employee_id%TYPE := &p_empno;

v_sal employees.salary%TYPE;

v_bonus_per NUMBER(7,2);

v_bonus NUMBER(7,2);

BEGIN

SELECT salary

INTO v_sal

FROM employees

WHERE employee_id = v_empno;

IF v_sal < 5000 THEN

v_bonus_per := .10;

ELSIF v_sal BETWEEN 5000 and 10000 THEN

v_bonus_per := .15;

ELSIF v_sal > 10000 THEN

v_bonus_per := .20;

ELSE

v_bonus_per := 0;

END IF;

v_bonus := v_sal * v_bonus_per;

DBMS_OUTPUT.PUT_LINE (’The bonus for the employee with employee_id ’
|| v_empno || ’ and salary ’ || v_sal || ’ is ’ || v_bonus);

END;

/

Employee Number Salary Resulting Bonus

100 24000 4800

149 10500 2100

178 7000 1050

Oracle9i: PL/SQL Fundamentals A-15

Practice 4 Solutions (continued)

If you have time, complete the following exercises:

3. Create an EMP table that is a replica of the EMPLOYEES table. You can do this by executing
the script lab04_3.sql. Add a new column, STARS, of VARCHAR2 data type and length 50 to
the EMP table for storing asterisk (*).
ALTER TABLE emp
ADD stars VARCHAR2(50);

4. Create a PL/SQL block that rewards an employee by appending an asterisk in the STARS
column for every $1000 of the employee’s salary. Save your PL/SQL block in a file called
p4q4.sql by clicking on the Save Script button. Remember to save the script with a .sql
extension.

a. Use the DEFINE command to provide the employee ID. Pass the value to the PL/SQL block
through a iSQL*Plus substitution variable.

SET VERIFY OFF

DEFINE p_empno = 104

b. Initialize a v_asterisk variable that contains a NULL.

c. Append an asterisk to the string for every $1000 of the salary amount. For example, if the
employee has a salary amount of $8000, the string of asterisks should contain eight asterisks.
If the employee has a salary amount of $12500, the string of asterisks should contain 13
asterisks.

d. Update the STARS column for the employee with the string of asterisks.

e. Commit.

f. Test the block for the following values:

DEFINE p_empno=104
DEFINE p_empno=174
DEFINE p_empno=176

Note: SET VERIFY OFF in the PL/SQL block

Oracle9i: PL/SQL Fundamentals A-16

Practice 4 Solutions (continued)

DECLARE

v_empno emp.employee_id%TYPE := TO_NUMBER(&p_empno);

v_asterisk emp.stars%TYPE := NULL;

v_sal emp.salary%TYPE;

BEGIN

SELECT NVL(ROUND(salary/1000), 0)

INTO v_sal

FROM emp

WHERE employee_id = v_empno;

FOR i IN 1..v_sal LOOP

v_asterisk := v_asterisk ||’*’;

END LOOP;

UPDATE emp

SET stars = v_asterisk

WHERE employee_id = v_empno;

COMMIT;

END;

/

SET VERIFY ON

g. Display the rows from the EMP table to verify whether your PL/SQL block has executed
successfully.

SELECT employee_id,salary, stars

FROM emp

WHERE employee_id IN (104,174,176);

Oracle9i: PL/SQL Fundamentals A-17

Practice 5 Solutions

1. Write a PL/SQL block to print information about a given country.

a. Declare a PL/SQL record based on the structure of the COUNTRIES table.

b. Use the DEFINE command to provide the country ID. Pass the value to the PL/SQL block
through a iSQL*Plus substitution variable.

SET SERVEROUTPUT ON

SET VERIFY OFF

DEFINE p_countryid = CA

c. Use DBMS_OUTPUT.PUT_LINE to print selected information about the country. A sample
output is shown below.

DECLARE

country_record countries%ROWTYPE;

BEGIN

SELECT *

INTO country_record

FROM countries

WHERE country_id = UPPER(’&p_countryid’);

DBMS_OUTPUT.PUT_LINE (’Country Id: ’ ||
country_record.country_id || ’ Country Name: ’ ||
country_record.country_name || ’ Region: ’ ||
country_record.region_id);

END;

/

d. Execute and test the PL/SQL block for the countries with the IDs CA, DE, UK, US

Oracle9i: PL/SQL Fundamentals A-18

Practice 5 Solutions (continued)
2. Create a PL/SQL block to retrieve the name of each department from the DEPARTMENTS table

and print each department name on the screen, incorporating an INDEX BY table. Save the code in a
file called p5q2.sql by clicking the Save Script button. Save the script with a .sql extension.

a. Declare an INDEX BY table, MY_DEPT_TABLE, to temporarily store the name of the
departments.

b. Using a loop, retrieve the name of all departments currently in the DEPARTMENTS table
and store them in the INDEX BY table. Use the following table to assign the value for
DEPARTMENT_ID based on the value of the counter used in the loop.

c. Using another loop, retrieve the department names from the PL/SQL table and print them to the
screen, using DBMS_OUTPUT.PUT_LINE.

SET SERVEROUTPUT ON
DECLARE

TYPE DEPT_TABLE_TYPE IS
TABLE OF departments.department_name%TYPE
INDEX BY BINARY_INTEGER;

my_dept_table dept_table_type;
v_count NUMBER (2);
v_deptno departments.department_id%TYPE;

BEGIN
SELECT COUNT(*) INTO v_count FROM departments;
FOR i IN 1..v_count
LOOP

IF i = 1 THEN
v_deptno := 10;

ELSIF i = 2 THEN
v_deptno := 20;

ELSIF i = 3 THEN
v_deptno := 50;

ELSIF i = 4 THEN
v_deptno := 60;

ELSIF i = 5 THEN
v_deptno := 80;

ELSIF i = 6 THEN
v_deptno := 90;

ELSIF i = 7 THEN
v_deptno := 110;

END IF;

COUNTER DEPARTMENT_ID

1 10
2 20
3 50
4 60
5 80
6 90

7 110

Oracle9i: PL/SQL Fundamentals A-19

Practice 5 Solutions (continued)

SELECT department_name INTO my_dept_table(i) FROM departments
WHERE department_id = v_deptno;

END LOOP;
FOR i IN 1..v_count
LOOP
DBMS_OUTPUT.PUT_LINE (my_dept_table(i));

END LOOP;
END;
/

SET SERVEROUTPUT OFF

If you have time, complete the following exercise.

3. Modify the block you created in practice 2 to retrieve all information about each department from
the DEPARTMENTS table and print the information to the screen, incorporating an INDEX BY
table of records.

a. Declare an INDEX BY table, MY_DEPT_TABLE, to temporarily store the number, name, and
location of all the departments.

b. Using a loop, retrieve all department information currently in the DEPARTMENTS table and
store it in the PL/SQL table. Use the following table to assign the value for
DEPARTMENT_ID based on the value of the counter used in the loop. Exit the loop when
the counter reaches the value 7.

c. Using another loop, retrieve the department information from the PL/SQL table and print it
to the screen, using DBMS_OUTPUT.PUT_LINE.

COUNTER DEPARTMENT_ID

1 10
2 20
3 50
4 60
5 80
6 90

7 110

Oracle9i: PL/SQL Fundamentals A-20

Practice 5 Solutions (continued)
SET SERVEROUTPUT ON

DECLARE

TYPE dept_table_type is table of departments%ROWTYPE

INDEX BY BINARY_INTEGER;

my_dept_table dept_table_type;

v_deptno departments.department_id%TYPE;

v_count NUMBER := 7;

BEGIN

FOR i IN 1..v_count

LOOP

IF i = 1 THEN

v_deptno := 10;

ELSIF i = 2 THEN

v_deptno := 20;

ELSIF i = 3 THEN

v_deptno := 50;

ELSIF i = 4 THEN

v_deptno := 60;

ELSIF i = 5 THEN

v_deptno := 80;

ELSIF i = 6 THEN

v_deptno := 90;

ELSIF i = 7 THEN

v_deptno := 110;

END IF;

SELECT *

INTO my_dept_table(i)

FROM departments

WHERE department_id = v_deptno;

END LOOP;

FOR i IN 1..v_count

LOOP

DBMS_OUTPUT.PUT_LINE (’Department Number: ’ ||
my_dept_table(i).department_id

|| ’ Department Name: ’ || my_dept_table(i).department_name

|| ’ Manager Id: ’|| my_dept_table(i).manager_id

|| ’ Location Id: ’ || my_dept_table(i).location_id);

END LOOP;

END;

/

Oracle9i: PL/SQL Fundamentals A-21

Practice 6 Solutions
1. Run the command in the script lab06_1.sql to create a new table for storing the salaries of the

employees.

CREATE TABLE top_dogs

(salary NUMBER(8,2));

2. Create a PL/SQL block that determines the top employees with respect to salaries.

a. Accept a number n from the user where n represents the number of top n earners from the
EMPLOYEES table. For example, to view the top five earners, enter 5.

Note: Use the DEFINE command to provide the value for n. Pass the value to the PL/SQL
block through a iSQL*Plus substitution variable.

DELETE FROM top_dogs;

DEFINE p_num = 5

b. In a loop use the iSQL*Plus substitution parameter created in step 1 and gather the salaries of
the top n people from the EMPLOYEES table. There should be no duplication in the salaries. If
two employees earn the same salary, the salary should be picked up only once.

c. Store the salaries in the TOP_DOGS table.

d. Test a variety of special cases, such as n = 0 or where n is greater than the number of employees
in the EMPLOYEES table. Empty the TOP_DOGS table after each test. The output shown
represents the five highest salaries in the EMPLOYEES table.

DECLARE

v_num NUMBER(3) := &p_num;

v_sal employees.salary%TYPE;

CURSOR emp_cursor IS

SELECT distinct salary

FROM employees

ORDER BY salary DESC;

BEGIN

OPEN emp_cursor;

FETCH emp_cursor INTO v_sal;

WHILE emp_cursor%ROWCOUNT <= v_num AND emp_cursor%FOUND LOOP

INSERT INTO top_dogs (salary)

VALUES (v_sal);

FETCH emp_cursor INTO v_sal;

END LOOP;

CLOSE emp_cursor;

COMMIT;

END;

/

SELECT * FROM top_dogs:

Oracle9i: PL/SQL Fundamentals A-22

Practice 6 Solutions (continued)

3. Create a PL/SQL block that does the following:

a. Use the DEFINE command to provide the department ID. Pass the value to the PL/SQL block
through a iSQL*Plus substitution variable.

SET SERVEROUTPUT ON

SET ECHO OFF

DEFINE p_dept_no = 10

b. In a PL/SQL block, retrieve the last name, salary and MANAGER ID of the employees working
in that department.

c. If the salary of the employee is less than 5000 and if the manager ID is either 101 or 124,
display the message <<last_name>> Due for a raise. Otherwise, display a
message <<last_name>> Not due for a raise.

Note: SET ECHO OFF to avoid displaying the PL/SQL code every time you execute the script

d. Test the PL/SQL block for the following cases:

Department ID Message

10 Whalen Due for a raise

20 Hartstein Not Due for a raise
Fay Not Due for a raise

50 Weiss Not Due for a raise
Fripp Due for a raise
Kaufling Due for a raise
Vollman Due for a raise
Mourgas Due for a raise
. . .
. . .

80 Russel Not Due for a raise
Partners Not Due for a raise
Errazuriz Not Due for a raise
Cambrault Not Due for a raise
. . .
. . .

Oracle9i: PL/SQL Fundamentals A-23

Practice 6 Solutions (continued)

DECLARE

v_deptno NUMBER(4) := &p_dept_no;

v_ename employees.last_name%TYPE;

v_sal employees.salary%TYPE;

v_manager employees.manager_id%TYPE;

CURSOR emp_cursor IS

SELECT last_name, salary,manager_id

FROM employees

WHERE department_id = v_deptno;

BEGIN

OPEN emp_cursor;

FETCH emp_cursor INTO v_ename, v_sal,v_manager;

WHILE emp_cursor%FOUND LOOP

IF v_sal < 5000 AND (v_manager = 101 OR v_manager = 124) THEN

DBMS_OUTPUT.PUT_LINE (v_ename || ’ Due for a raise’);

ELSE

DBMS_OUTPUT.PUT_LINE (v_ename || ’ Not Due for a raise’);

END IF;

FETCH emp_cursor INTO v_ename, v_sal,v_manager;

END LOOP;

CLOSE emp_cursor;

END;

/

SET SERVEROUTPUT OFF

Oracle9i: PL/SQL Fundamentals A-24

Practice 7 Solutions

1. In a loop, use a cursor to retrieve the department number and the department name from the
DEPARTMENTS table for those departments whose DEPARTMENT_ID is less than 100. Pass the
department number to another cursor to retrieve from the EMPLOYEES table the details of
employee last name, job, hire date, and salary of those employees whose EMPLOYEE_ID is less
than 120 and who work in that department.

SET SERVEROUTPUT ON

DECLARE

CURSOR dept_cursor IS

SELECT department_id,department_name

FROM departments

WHERE department_id < 100

ORDER BY department_id;

CURSOR emp_cursor(v_deptno NUMBER) IS

SELECT last_name,job_id,hire_date,salary

FROM employees

WHERE department_id = v_deptno

AND employee_id < 120;

v_current_deptno departments.department_id%TYPE;

v_current_dname departments.department_name%TYPE;

v_ename employees.last_name%TYPE;

v_job employees.job_id%TYPE;

v_hiredate employees.hire_date%TYPE;

v_sal employees.salary%TYPE;

v_line varchar2(100);

BEGIN

v_line := ’
’;

OPEN dept_cursor;

LOOP

FETCH dept_cursor INTO
v_current_deptno,v_current_dname;

EXIT WHEN dept_cursor%NOTFOUND;

DBMS_OUTPUT.PUT_LINE (’Department Number : ’ ||
v_current_deptno || ’ Department Name : ’ || v_current_dname);

Oracle9i: PL/SQL Fundamentals A-25

Practice 7 Solutions (continued)

DBMS_OUTPUT.PUT_LINE(v_line);

IF emp_cursor%ISOPEN THEN

CLOSE emp_cursor;

END IF;

OPEN emp_cursor (v_current_deptno);

LOOP

FETCH emp_cursor INTO
v_ename,v_job,v_hiredate,v_sal;

EXIT WHEN emp_cursor%NOTFOUND;

DBMS_OUTPUT.PUT_LINE (v_ename || ’ ’ || v_job || ’ ’
|| v_hiredate || ’ ’ || v_sal);

END LOOP;

IF emp_cursor%ISOPEN THEN

CLOSE emp_cursor;

END IF;

DBMS_OUTPUT.PUT_LINE(v_line);

END LOOP;

IF emp_cursor%ISOPEN THEN

CLOSE emp_cursor;

END IF;

CLOSE dept_cursor;

END;

/

SET SERVEROUTPUT OFF

Alternative Solution:

SET SERVEROUTPUT ON

DECLARE

CURSOR DEPT_CUR IS

SELECT DEPARTMENT_ID DEPTNO, DEPARTMENT_NAME DNAME

FROM DEPARTMENTS

WHERE DEPARTMENT_ID < 100;

CURSOR EMP_CUR (P_DEPTNO NUMBER) IS

SELECT * FROM EMPLOYEES

WHERE DEPARTMENT_ID = P_DEPTNO AND EMPLOYEE_ID < 120;

Oracle9i: PL/SQL Fundamentals A-26

Practice 7 Solutions (continued)
BEGIN

FOR DEPT_REC IN DEPT_CUR LOOP

DBMS_OUTPUT.PUT_LINE

(’DEPARTMENT NUMBER: ’ || DEPT_REC.DEPTNO ||’

DEPARTMENT NAME: ’ || DEPT_REC.DNAME);

FOR EMP_REC IN EMP_CUR(DEPT_REC.DEPTNO) LOOP

DBMS_OUTPUT.PUT_LINE

(EMP_REC.LAST_NAME ||’ ’||EMP_REC.JOB_ID||’

’||EMP_REC.HIRE_DATE||’ ’||EMP_REC.SALARY);

END LOOP;

DBMS_OUTPUT.PUT_LINE(CHR(10));

END LOOP;

END;

/

Oracle9i: PL/SQL Fundamentals A-27

Practice 7 Solutions (continued)

2. Modify the code in sol04_4.sql to incorporate a cursor using the FOR UPDATE and WHERE
CURRENT OF functionality in cursor processing.

a. Define the host variables.

SET VERIFY OFF
DEFINE p_empno = 104

b. Execute the modified PL/SQL block
DECLARE
v_empno emp.employee_id%TYPE := &p_empno;
v_asterisk emp.stars%TYPE := NULL;
CURSOR emp_cursor IS
SELECTemployee_id, NVL(ROUND(salary/1000), 0) sal
FROM emp
WHERE employee_id = v_empno
FOR UPDATE;

BEGIN
FOR emp_record IN emp_cursor LOOP
FOR i IN 1..emp_record.sal LOOP
v_asterisk := v_asterisk ||’*’;
DBMS_OUTPUT.PUT_LINE(v_asterisk);

END LOOP;
UPDATEemp
SET stars = v_asterisk
WHERE CURRENT OF emp_cursor;
v_asterisk := NULL;

END LOOP;
COMMIT;

END;
/
SET VERIFY ON

c. Execute the following command to check if your PL/SQL block has worked successfully:

SELECT employee_id,salary,stars
FROM EMP
WHERE employee_id IN (176,174,104);

Oracle9i: PL/SQL Fundamentals A-28

Practice 8 Solutions
1. Write a PL/SQL block to select the name of the employee with a given salary value.

a. Use the DEFINE command to provide the salary.

SET VERIFY OFF

DEFINE p_sal = 6000

b. Pass the value to the PL/SQL block through a iSQL*Plus substitution variable. If the salary
entered returns more than one row, handle the exception with an appropriate exception
handler and insert into the MESSAGES table the message “More than one employee with a
salary of <salary>.”

c. If the salary entered does not return any rows, handle the exception with an appropriate
exception handler and insert into the MESSAGES table the message “No employee with a
salary of <salary>.”

d. If the salary entered returns only one row, insert into the MESSAGES table the employee’s
name and the salary amount.

e. Handle any other exception with an appropriate exception handler and insert into the
MESSAGES table the message “Some other error occurred.”

f. Test the block for a variety of test cases. Display the rows from the MESSAGES table to check
whether the PL/SQL block has executed successfully

DECLARE

v_ename employees.last_name%TYPE;

v_sal employees.salary%TYPE := &p_sal;

BEGIN

SELECT last_name

INTO v_ename

FROM employees

WHERE salary = v_sal;

INSERT INTO messages (results)

VALUES (v_ename || ’ - ’ || v_sal);

EXCEPTION

WHEN no_data_found THEN

INSERT INTO messages (results)

VALUES (’No employee with a salary of ’|| TO_CHAR(v_sal));

WHEN too_many_rows THEN

INSERT INTO messages (results)

VALUES (’More than one employee with a salary of ’||

TO_CHAR(v_sal));

WHEN others THEN

INSERT INTO messages (results)

VALUES (’Some other error occurred.’);

END;

/

SET VERIFY ON

Oracle9i: PL/SQL Fundamentals A-29

Practice 8 Solutions (continued)

2. Modify the code in p3q3.sql to add an exception handler.
a. Use the DEFINE command to provide the department ID and department location. Pass the

values to the PL/SQL block through a iSQL*Plus substitution variables.

SET VERIFY OFF

VARIABLE g_message VARCHAR2(100)

DEFINE p_deptno = 200

DEFINE p_loc = 1400

b. Write an exception handler for the error to pass a message to the user that the specified
department does not exist. Use a bind variable to pass the message to the user.

c. Execute the PL/SQL block by entering a department that does not exist.

DECLARE

e_invalid_dept EXCEPTION;

v_deptno departments.department_id%TYPE := &p_deptno;

BEGIN

UPDATE departments

SET location_id = &p_loc

WHERE department_id = &p_deptno;

COMMIT;

IF SQL%NOTFOUND THEN

raise e_invalid_dept;

END IF;

EXCEPTION

WHEN e_invalid_dept THEN

:g_message := ’Department ’|| TO_CHAR(v_deptno) ||’ is an
invalid department’;

END;

/

SET VERIFY ON

PRINT g_message

Oracle9i: PL/SQL Fundamentals A-30

Practice 8 Solutions (continued)

3. Write a PL/SQL block that prints the number of employees who earn plus or minus $100
of the salary value set for an iSQL*Plus substitution variable. Use the DEFINE command to
provide the salary value. Pass the value to the PL/SQL block through a iSQL*Plus substitution
variable.

a. If there is no employee within that salary range, print a message to the user indicating
that is the case. Use an exception for this case.

VARIABLE g_message VARCHAR2(100)

SET VERIFY OFF

DEFINE p_sal = 7000

b. If there are one or more employees within that range, the message should indicate
how many employees are in that salary range.

c. Handle any other exception with an appropriate exception handler. The message should
indicate that some other error occurred.

DECLARE

v_sal employees.salary%TYPE := &p_sal;

v_low_sal employees.salary%TYPE := v_sal - 100;

v_high_sal employees.salary%TYPE := v_sal + 100;

v_no_emp NUMBER(7);

e_no_emp_returned EXCEPTION;

e_more_than_one_emp EXCEPTION;

BEGIN

SELECT count(last_name)

INTO _no_emp

FROM employees

WHERE salary between v_low_sal and v_high_sal;

IF v_no_emp = 0 THEN

RAISE e_no_emp_returned;

ELSIF v_no_emp > 0 THEN

RAISE e_more_than_one_emp;

END IF;

Oracle9i: PL/SQL Fundamentals A-31

Practice 8 Solutions (continued)
EXCEPTION

WHEN e_no_emp_returned THEN

:g_message := ’There is no employee salary between ’||

TO_CHAR(v_low_sal) || ’ and ’||

TO_CHAR(v_high_sal);

WHEN e_more_than_one_emp THEN

:g_message := ’There is/are ’|| TO_CHAR(v_no_emp) ||

’ employee(s) with a salary between ’||

TO_CHAR(v_low_sal) || ’ and ’||

TO_CHAR(v_high_sal);

WHEN others THEN

:g_message := ’Some other error occurred.’;

END;

/

SET VERIFY ON

PRINT g_message

Oracle9i: PL/SQL Fundamentals A-32

Table Descriptions and
Data

B

Oracle9i: PL/SQL Fundamentals B-2

ENTITY RELATIONSHIP DIAGRAM

Oracle9i: PL/SQL Fundamentals B-3

Tables in the Schema

SELECT * FROM tab;

Oracle9i: PL/SQL Fundamentals B-4

REGIONS Table

DESCRIBE regions

SELECT * FROM regions;

Oracle9i: PL/SQL Fundamentals B-5

COUNTRIES Table

SELECT * FROM countries;

DESCRIBE countries

Oracle9i: PL/SQL Fundamentals B-6

LOCATIONS Table

SELECT * FROM locations;

DESCRIBE locations;

Oracle9i: PL/SQL Fundamentals B-7

DEPARTMENTS Table

DESCRIBE departments

SELECT * FROM departments;

Oracle9i: PL/SQL Fundamentals B-8

JOBS Table

DESCRIBE jobs

SELECT * FROM jobs;

Oracle9i: PL/SQL Fundamentals B-9

EMPLOYEES Table

DESCRIBE employees

Oracle9i: PL/SQL Fundamentals B-10

EMPLOYEES Table

The headings for columns COMMISSION_PCT, MANAGER_ID, and DEPARTMENT_ID are set
to COMM, MGRID, and DEPTID in the following screenshot, to fit the table values across the page.

SELECT * FROM employees;

Oracle9i: PL/SQL Fundamentals B-11

EMPLOYEES Table (continued)

Oracle9i: PL/SQL Fundamentals B-12

EMPLOYEES Table (continued)

Oracle9i: PL/SQL Fundamentals B-13

JOB_HISTORY Table

DESCRIBE job_history

SELECT * FROM job_history;

Oracle9i: PL/SQL Fundamentals B-14

Copyright © Oracle Corporation, 2001. All rights reserved.

REF Cursors

Oracle9i: PL/SQL Fundamentals C-2

Copyright © Oracle Corporation, 2001. All rights reserved.C-2

Cursor Variables

• Cursor variables are like C or Pascal pointers,
which hold the memory location (address) of an
item instead of the item itself

• In PL/SQL, a pointer is declared as REF X, where
REF is short for REFERENCE and X stands for a
class of objects

• A cursor variable has the data type REF CURSOR

• A cursor is static, but a cursor variable is dynamic

• Cursor variables give you more flexibility

Cursor Variables

Cursor variables are like C or Pascal pointers, which hold the memory location (address) of some
item instead of the item itself. Thus, declaring a cursor variable creates a pointer, not an item. In
PL/SQL, a pointer has the datatype REF X, where REF is short for REFERENCE and X stands for a
class of objects. A cursor variable has datatype REF CURSOR.

Like a cursor, a cursor variable points to the current row in the result set of a multirow query.
However, cursors differ from cursor variables the way constants differ from variables. A cursor is
static, but a cursor variable is dynamic because it is not tied to a specific query. You can open a
cursor variable for any type-compatible query. This gives you more flexibility.

Cursor variables are available to every PL/SQL client. For example, you can declare a cursor
variable in a PL/SQL host environment such as an OCI or Pro*C program, and then pass it as an
input host variable (bind variable) to PL/SQL. Moreover, application development tools such as
Oracle Forms and Oracle Reports, which have a PL/SQL engine, can use cursor variables entirely on
the client side. The Oracle server also has a PL/SQL engine. You can pass cursor variables back and
forth between an application and server through remote procedure calls (RPCs).

Oracle9i: PL/SQL Fundamentals C-3

Copyright © Oracle Corporation, 2001. All rights reserved.C-3

Why Use Cursor Variables?

• You can use cursor variables to pass query result
sets between PL/SQL stored subprograms and
various clients.

• PL/SQL can share a pointer to the query work area
in which the result set is stored.

• You can pass the value of a cursor variable freely
from one scope to another.

• You can reduce network traffic by having a
PL/SQL block open (or close) several host cursor
variables in a single round trip.

Why Use Cursor Variables?

You use cursor variables to pass query result sets between PL/SQL stored subprograms and various
clients. Neither PL/SQL nor any of its clients owns a result set; they simply share a pointer to the
query work area in which the result set is stored. For example, an OCI client, an Oracle Forms
application, and the Oracle server can all refer to the same work area.

A query work area remains accessible as long as any cursor variable points to it. Therefore, you can
pass the value of a cursor variable freely from one scope to another. For example, if you pass a host
cursor variable to a PL/SQL block that is embedded in a Pro*C program, the work area to which the
cursor variable points remains accessible after the block completes.

If you have a PL/SQL engine on the client side, calls from client to server impose no restrictions.
For example, you can declare a cursor variable on the client side, open and fetch from it on the
server side, then continue to fetch from it back on the client side. Also, you can reduce network
traffic by having a PL/SQL block open (or close) several host cursor variables in a single round trip.

A cursor variable holds a reference to the cursor work area in the PGA instead of addressing it with
a static name. Because you address this area by a reference, you gain the flexibility of a variable.

Oracle9i: PL/SQL Fundamentals C-4

Copyright © Oracle Corporation, 2001. All rights reserved.C-4

Defining REF CURSOR Types

• Define a REF CURSOR type.

Define a REF CURSOR type
TYPE ref_type_name IS REF CURSOR [RETURN return_type];

• Declare a cursor variable of that type.

ref_cv ref_type_name;

• Example:
DECLARE
TYPE DeptCurTyp IS REF CURSOR RETURN
departments%ROWTYPE;
dept_cv DeptCurTyp;

Defining REF CURSOR Types
To define a REF CURSOR, you perform two steps. First, you define a REF CURSOR type, and then
you declare cursor variables of that type. You can define REF CURSOR types in any PL/SQL block,
subprogram, or package using the following syntax:

TYPE ref_type_name IS REF CURSOR [RETURN return_type];

in which:

ref_type_name is a type specifier used in subsequent declarations of cursor variables

return_type represents a record or a row in a database table

In the following example, you specify a return type that represents a row in the database table
DEPARTMENT.

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). As the next example shows,
a strong REF CURSOR type definition specifies a return type, but a weak definition does not:

DECLARE

TYPE EmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE; --
strong

TYPE GenericCurTyp IS REF CURSOR; -- weak

Oracle9i: PL/SQL Fundamentals C-5

Defining REF CURSOR Types (continued)
Strong REF CURSOR types are less error prone because the PL/SQL compiler lets you associate a
strongly typed cursor variable only with type-compatible queries. However, weak REF CURSOR
types are more flexible because the compiler lets you associate a weakly typed cursor variable with
any query.

Declaring Cursor Variables
After you define a REF CURSOR type, you can declare cursor variables of that type in any PL/SQL
block or subprogram. In the following example, you declare the cursor variable DEPT_CV:

DECLARE

TYPE DeptCurTyp IS REF CURSOR RETURN departments%ROWTYPE;

dept_cv DeptCurTyp; -- declare cursor variable

Note: You cannot declare cursor variables in a package. Unlike packaged variables, cursor variables
do not have persistent states. Remember, declaring a cursor variable creates a pointer, not an item.
Cursor variables cannot be saved in the database; they follow the usual scoping and instantiation
rules.
In the RETURN clause of a REF CURSOR type definition, you can use %ROWTYPE to specify a
record type that represents a row returned by a strongly (not weakly) typed cursor variable, as
follows:
DECLARE

TYPE TmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;

tmp_cv TmpCurTyp; -- declare cursor variable

TYPE EmpCurTyp IS REF CURSOR RETURN tmp_cv%ROWTYPE;

emp_cv EmpCurTyp; -- declare cursor variable

Likewise, you can use %TYPE to provide the datatype of a record variable, as the following example
shows:
DECLARE

dept_rec departments%ROWTYPE; -- declare record variable

TYPE DeptCurTyp IS REF CURSOR RETURN dept_rec%TYPE;

dept_cv DeptCurTyp; -- declare cursor variable

In the final example, you specify a user-defined RECORD type in the RETURN clause:

DECLARE

TYPE EmpRecTyp IS RECORD (

empno NUMBER(4),

ename VARCHAR2(1O),

sal NUMBER(7,2));

TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;

emp_cv EmpCurTyp; -- declare cursor variable

Cursor Variables As Parameters
You can declare cursor variables as the formal parameters of functions and procedures. In the
following example, you define the REF CURSOR type EmpCurTyp, and then declare a cursor
variable of that type as the formal parameter of a procedure:
DECLARE

TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS ...

Oracle9i: PL/SQL Fundamentals C-6

Copyright © Oracle Corporation, 2001. All rights reserved.C-6

Using the OPEN-FOR, FETCH, and CLOSE
Statements

• The OPEN-FOR statement associates a cursor
variable with a multirow query, executes the
query, identifies the result set, and positions the
cursor to point to the first row of the result set.

• The FETCH statement returns a row from the result
set of a multirow query, assigns the values of
select-list items to corresponding variables or
fields in the INTO clause, increments the count
kept by %ROWCOUNT, and advances the cursor to
the next row.

• The CLOSE statement disables a cursor variable.

Using the OPEN-FOR, FETCH, and CLOSE Statements

You use three statements to process a dynamic multirow query: OPEN-FOR, FETCH, and
CLOSE. First, you OPEN a cursor variable FOR a multirow query. Then, you FETCH rows from the
result set one at a time. When all the rows are processed, you CLOSE the cursor variable.

Opening the Cursor Variable

The OPEN-FOR statement associates a cursor variable with a multirow query, executes the query,
identifies the result set, positions the cursor to point to the first row of the results set, then sets the
rows-processed count kept by %ROWCOUNT to zero. Unlike the static form of OPEN-FOR, the
dynamic form has an optional USING clause. At run time, bind arguments in the USING clause
replace corresponding placeholders in the dynamic SELECT statement. The syntax is:

OPEN {cursor_variable | :host_cursor_variable} FOR dynamic_string

[USING bind_argument[, bind_argument]...];

where CURSOR_VARIABLE is a weakly typed cursor variable (one without a return type),
HOST_CURSOR_VARIABLE is a cursor variable declared in a PL/SQL host environment such as an
OCI program, and dynamic_string is a string expression that represents a multirow query.

Oracle9i: PL/SQL Fundamentals C-7

Using the OPEN-FOR, FETCH, and CLOSE Statements (continued)
In the following example, the syntax declares a cursor variable, and then associates it with a
dynamic SELECT statement that returns rows from the EMPLOYEES table:
DECLARE
TYPE EmpCurTyp IS REF CURSOR; -- define weak REF CURSOR type
emp_cv EmpCurTyp; -- declare cursor variable
my_ename VARCHAR2(15);
my_sal NUMBER := 1000;
BEGIN
OPEN emp_cv FOR -- open cursor variable

’SELECT last_name, salary FROM employees WHERE salary > :s’
USING my_sal;

...
END;

Any bind arguments in the query are evaluated only when the cursor variable is opened. Thus, to
fetch rows from the cursor using different bind values, you must reopen the cursor variable with the
bind arguments set to their new values.
Fetching from the Cursor Variable
The FETCH statement returns a row from the result set of a multirow query, assigns the values of
select-list items to corresponding variables or fields in the INTO clause, increments the count kept
by %ROWCOUNT, and advances the cursor to the next row. Use the following syntax:
FETCH {cursor_variable | :host_cursor_variable}

INTO {define_variable[, define_variable]... | record};

Continuing the example, fetch rows from cursor variable EMP_CV into define variables MY_ENAME
and MY_SAL:
LOOP

FETCH emp_cv INTO my_ename, my_sal; -- fetch next row

EXIT WHEN emp_cv%NOTFOUND; -- exit loop when last row is fetched

-- process row

END LOOP;

For each column value returned by the query associated with the cursor variable, there must be a
corresponding, type-compatible variable or field in the INTO clause. You can use a different INTO
clause on separate fetches with the same cursor variable. Each fetch retrieves another row from the
same result set. If you try to fetch from a closed or never-opened cursor variable, PL/SQL raises the
predefined exception INVALID_CURSOR.

Closing the Cursor Variable
The CLOSE statement disables a cursor variable. After that, the associated result set is undefined.
Use the following syntax:
CLOSE {cursor_variable | :host_cursor_variable};

In this example, when the last row is processed, close cursor variable EMP_CV:
LOOP

FETCH emp_cv INTO my_ename, my_sal;

EXIT WHEN emp_cv%NOTFOUND;

-- process row

END LOOP;

CLOSE emp_cv; -- close cursor variable

If you try to close an already-closed or never-opened cursor variable, PL/SQL raises
INVALID_CURSOR.

Oracle9i: PL/SQL Fundamentals C-8

Copyright © Oracle Corporation, 2001. All rights reserved.C-8

An Example of Fetching

DECLARE
TYPE EmpCurTyp IS REF CURSOR;
emp_cv EmpCurTyp;
emp_rec employees%ROWTYPE;
sql_stmt VARCHAR2(200);
my_job VARCHAR2(10) := ’ST_CLERK’;

BEGIN
sql_stmt := ’SELECT * FROM employees

WHERE job_id = :j’;
OPEN emp_cv FOR sql_stmt USING my_job;
LOOP

FETCH emp_cv INTO emp_rec;
EXIT WHEN emp_cv%NOTFOUND;
-- process record

END LOOP;
CLOSE emp_cv;

END;
/

An Example of Fetching

The example in the preceding slide shows that you can fetch rows from the result set of a dynamic
multirow query into a record. First you must define a REF CURSOR type, EmpCurTyp. Next you
define a cursor variable emp_cv, of the type EmpcurTyp. In the executable section of the
PL/SQL block, the OPEN-FOR statement associates the cursor variable EMP_CV with the multirow
query, sql_stmt. The FETCH statement returns a row from the result set of a multirow query and
assigns the values of select-list items to EMP_REC in the INTO clause. When the last row is
processed, close the cursor variable EMP_CV.

Index

%

%ISOPEN 6-14

%NOTFOUND 6-15

%TYPE 1-23

A

attribute 1-23

Anonymous blocks 1-5

B

basic loop 4-19

Boolean expressions 1-25

Bind variable 1-10

BFILE 1-27

BLOB 1-27

C

clause 3-6,7-5

control structures 4-3

clause 7-7

collections 1-26

comments 2-7

composite data types, 1-9

conversion 2-10

cursor 3-18,6-20

cursor attributes 6-13

CASE 4-3

CLOB 1-27

CLOSE 6-12

COMMIT 3-21

D

declaration section 1-12

declare an explicit cursor 6-7

Delimiters 2-4

DBMS_OUTPUT 1-32

DEFAULT 1-15

E

exception 8-3

exception handler 8-6

expressions 4-3

explicit cursors 6-4

external large object 15-8

ELSIF 4-5

END IF 4-5

EXIT 4-19

F

FETCH 6-10

FOR 4-23

FOR UPDATE 7-5

I

Identifiers 2-5

implicit cursor 3-18

INSERT 3-11

INT 3-6

L

locator 1-9

loop 4-21,4-3

LOB 1-27

N

naming convention 3-16

NCHAR 1-27

NCLOB 1-27

nest loops 4-27

nested blocks 2-12

non-predefined Oracle server error 8-12

O

OPEN 6-9

OTHER 8-6

P

parameter in the cursor declaration 7-3

pointer 1-9

predefined Oracle Server error 8-8

programming guidelines 2-19

propagate the exception 8-18

PRAGMA 8-12

PRINT 1-30

R

reference host variables 1-31

RAISE_APPLICATION_ERROR 8-20

ROLLBACK 3-21

S

statement 4-3

SAVEPOINT 3-21

Scalar data types 1-9

Subprograms 1-5

subquery 7-9

SELECT 3-4

SQLCODE 8-14

SQLERR 8-14

T

TO_DATE 1-15

U

use 15-13

user-defined exception 8-17

UPDATE 3-12

V

variables 1-7

W

WHEN OTHER 8-15

WHERE CURRENT OF 7-7

WHILE 4-21

