Oracle9i: PL/SQL Fundamentals

Student Guide

40055GC11
Production 1.1
November 2001
D34069

ORACLE"

Authors
Priya Nathan

Technical Contributors
and Reviewers

Anna Atkinson
Cedjas Zarco
Chaya Rao

Coley William
Daniel Gabel

Dr. Christoph Burandt
Helen Robertson
Judy Brink

Laszlo Czinkoczki
Laura Pezzini
Linda Boldt

Marco Verbeek
Nagavalli Pataballa
Robert Squires
Sarah Jones

Stefan Lindblad
Sue Onraet

Susan Dee

Publisher
May Lonn Chan-Villareal

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Ill (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Preface
Curriculum Map

Introduction

Course Obijectives 1-2
About PL/SQL 1-3
PL/SQL Environment 1-4
Benefits of PL/SQL I-5
Summary 1-10

1 Declaring Variables
Objectives 1-2
PL/SQL Block Structure 1-3
Executing Statements and PL/SQL Blocks 1-4
Block Types 1-5
Program Constructs 1-6
Use of Variables 1-7
Handling Variables in PL/SQL 1-8
Types of Variables 1-9
Using iSQL*Plus Variables Within PL/SQL Blocks 1-10
Types of Variables 1-11
Declaring PL/SQL Variables 1-12
Guidelines for Declaring PL/SQL Variables 1-13
Naming Rules 1-14
Variable Initialization and Keywords 1-15
Scalar Data Types 1-17
Base Scalar Data Types 1-18
Scalar Variable Declarations 1-22
The %TYPE Attribute 1-23
Declaring Variables with the %TYPE Attribute 1-24
Declaring Boolean Variables 1-25
Composite Data Types 1-26
LOB Data Type Variables 1-27
Bind Variables 1-28
Using Bind Variables 1-30
Referencing Non-PL/SQL Variables 1-31
DBMS_OUTPUT.PUT_LINE 1-32
Summary 1-33
Practice 1 Overview 1-35

2 Writing Executable Statements
Objectives 2-2
PL/SQL Block Syntax and Guidelines 2-3
Identifiers 2-5
PL/SQL Block Syntax and Guidelines 2-6
Commenting Code 2-7
SQL Functions in PL/SQL 2-8
SQL Functions in PL/SQL: Examples 2-9
Data Type Conversion 2-10
Nested Blocks and Variable Scope 2-13
Identifier Scope 2-15
Qualify an Identifier 2-16
Determining Variable Scope 2-17
Operators in PL/SQL 2-18
Programming Guidelines 2-20
Indenting Code 2-21
Summary 2-22
Practice 2 Overview 2-23

3 Interacting with the Oracle Server
Objectives 3-2
SQL Statements in PL/SQL 3-3
SELECT Statements in PL/SQL 3-4
Retrieving Data in PL/SQL 3-7
Naming Conventions 3-9
Manipulating Data Using PL/SQL 3-10
Inserting Data 3-11
Updating Data 3-12
Deleting Data 3-13
Merging Rows 3-14
Naming Conventions 3-16
SQL Cursor 3-18
SQL Cursor Attributes 3-19
Transaction Control Statements 3-21
Summary 3-22
Practice 3 Overview 3-24

4 Writing Control Structures
Objectives 4-2
Controlling PL/SQL Flow of Execution 4-3
IF Statements 4-4
Simple IF Statements 4-5
Compound IF Statements 4-6
IF-THEN-ELSE Statement Execution Flow 4-7
IF-THEN-ELSE Statements 4-8
IF-THEN-ELSIF Statement Execution Flow 4-9
IF-THEN-ELSIF Statements 4-11
CASE Expressions 4-12
CASE Expressions: Example 4-13
Handling Nulls 4-15
Logic Tables 4-16
Boolean Conditions 4-17
Iterative Control: LOOP Statements 4-18
Basic Loops 4-19
WHILE Loops 4-21
FOR Loops 4-23
Guidelines While Using Loops 4-26
Nested Loops and Labels 4-27
Summary 4-29
Practice 4 Overview 4-30

5 Working with Composite Data Types
Objectives 5-2
Composite Data Types 5-3
PL/SQL Records 5-4
Creating a PL/SQL Record 5-5
PL/SQL Record Structure 5-7
The %ROWTYPE Attribute 5-8
Advantages of Using %ROWTYPE 5-10
The %ROWTYPE Attribute 5-11
INDEX BY Tables 5-13
Creating an INDEX BY Table 5-14
INDEX BY Table Structure 5-15
Creating an INDEX BY Table 5-16
Using INDEX BY Table Methods 5-17
INDEX BY Table of Records 5-18
Example of INDEX BY Table of Records 5-19
Summary 5-20
Practice 5 Overview 5-21

6 Writing Explicit Cursors
Objectives 6-2
About Cursors 6-3
Explicit Cursor Functions 6-4
Controlling Explicit Cursors 6-5
Declaring the Cursor 6-9
Opening the Cursor 6-11
Fetching Data from the Cursor 6-12
Closing the Cursor 6-14
Explicit Cursor Attributes 6-15
The %ISOPEN Attribute 6-16
Controlling Multiple Fetches 6-17
The %NOTFOUND and %ROWCOUNT Attributes 6-18
Example 6-20
Cursors and Records 6-21
Cursor FOR Loops 6-22
Cursor FOR Loops Using Subqueries 6-24
Summary 6-26
Practice 6 Overview 6-27

7 Advanced Explicit Cursor Concepts
Objectives 7-2
Cursors with Parameters 7-3
The FOR UPDATE Clause 7-5
The WHERE CURRENT OF Clause 7-7
Cursors with Subqueries 7-9
Summary 7-10
Practice 7 Overview 7-11

8 Handling Exceptions
Objectives 8-2
Handling Exceptions with PL/SQL 8-3
Handling Exceptions 8-4
Exception Types 8-5
Trapping Exceptions 8-6
Trapping Exceptions Guidelines 8-7
Trapping Predefined Oracle Server Errors 8-8

Vi

Predefined Exceptions 8-11

Trapping Nonpredefined Oracle Server Errors 8-12
Nonpredefined Error 8-13

Functions for Trapping Exceptions 8-14

Trapping User-Defined Exceptions 8-16
User-Defined Exceptions 8-17

Calling Environments 8-18

Propagating Exceptions 8-19

The RAISE_APPLICATION_ERROR Procedure 8-20
RAISE_APPLICATION_ERROR 8-22

Summary 8-23

Practice 8 Overview 8-24

Practice Solutions

Table Description and Data
REF Cursors

Additional Practices
Additional Practice Solutions

Index

Vii

Preface

Oracle9i: PL/SQL Fundamentals Preface - 2

Profile
Before You Begin ThisCourse

Before you begin this course, you should have thorough knowledge of SQL,
1ISQL* Plus, and working experience devel oping applications. Required
prerequisites are Introduction to Oracle9i: SQL, or Introduction to Oracle9i for
Experienced QL Users.

How This Course s Organized

Oracle9i: PL/SQL Fundamentalsis an instructor-led course featuring lectures and
hands-on exercises. Online demonstrations and practice sessions reinforce the
concepts and skills that are introduced.

Oracle9i: PL/SQL Fundamentals Preface - 3

Related Publications

Oracle Publications
Title Part Number
Oracle9i Application Developer’s Guide-Fundamentals A88876-02
Oracle9i Application Developer’s Guide-Large Objects A88879-01
Oracle9i Supplied PL/SQL Packages and Type Reference A89852-02
PL/QL User’s Guide and Reference A89856-01

Additional Publications
* System release bulletins
* Installation and user’s guides
* read. nefiles
* International Oracle User’s Group (IOUG) articles
* Oracle Magazine

Oracle9i: PL/SQL Fundamentals Preface - 4

Typographic Conventions

Following are two lists of typographical conventionsthat are used specifically within text or
within code.

Typographic Conventions Within Text

Convention Object or Term Example

Uppercase Commands, Use the SELECT command to view
functions, information stored inthe LAST_NAME
column names, column of the EMPLOY EES table.
table names,

PL/SQL objects,
schemas

Lowercase, Filenames, where: roleisthe name of theroleitaic
syntax variables, to be created.
usernames,
passwords

Initial cap Trigger and Assign aWhen-Validate-Item trigger to
button names the ORD block.

Choose Cancel.

Italic Books, names of For more information on the subject, see
courses and Oracle9i Server QL Language Reference
manuals, and Manual.
emphasized
words or phrases Do not save changes to the database.

Quotation marks Lesson module This subject is covered in Lesson 3,
titles referenced “Working with Objects.”

within a course

Oracle9i: PL/SQL Fundamentals Preface - 5

Typographic Conventions (continued)

Typographic Conventions Within Code

Convention Object or Term
Uppercase Commands,
functions
Lowercase, Syntax variables
italic
Initial cap Formstriggers
Lowercase Column names,
table names,
filenames,
PL/SQL objects
Bold Text that must
be entered by a
user

Example

SELECT userid
FROM enp;

CREATE ROLE rol e;

For m nodul e: ORD
Trigger level: S |ITEM QUANTITY
item

nane: Wen-Validate-Item

Tri gger

OG_ACTI VATE_LAYER
(OG_GET_LAYER
(" prod_pie_layer’))

SELECT | ast _nane
FROM enp;

DROP USER scott;

Oracle9i: PL/SQL Fundamentals Preface - 6

Curriculum
Map

Languages Curriculum for Oracle9i

Introduction to . . Oracle9i: SQL for
Oraclegi: SQL or Introductlofrl):o Oracle9i End Users
Introduction Oracle9i: Experienced SQL Users inClass
to Oracle9i: Advanced
SQL Basics SQL
” inClass
inClass

I_l_l

Oracle9i: Program with PL/SQL

Oracle9i: PL/SQL Oracle9i: Develop PL/SQL
Fundamentals Program Units

inClass

Oracle%i: Advanced PL/SQL
inClass

Copyright © Oracle Corporation, 2001. All rights reserved.

Integrated Languages Curriculum

Introduction to Oracle9i: SQL consists of two modules, Introduction to Oracle9i: SQL Basics and
Oracle9i: Advanced SQL. Introduction to Oracle9i: SQL Basics covers creating database structures
and storing, retrieving, and manipulating datain arelational database. Oracle9i: Advanced SQL
covers advanced SELECT statements, Oracle SQL and iSQL* Plus Reporting.

For people who have worked with other relational databases and have knowledge of SQL, another
course, caled Introduction to Oracle9i for Experienced SQL Usersis offered. This course covers the
SQL statements that are not part of ANSI SQL but are specific to Oracle.

Oracle9i: Programwith PL/SQL consists of two modules, Oracle9i: PL/SQL Fundamentals and
Oracle9i: Develop PL/SQL Program Units. Oracle9i: PL/SQL Fundamentals covers PL/SQL basics
including the PL/SQL language structure, flow of execution and interface with SQL. Oracle9i:
Develop PL/SQL Program Units covers creating stored procedures, functions, packages, and triggers
aswell as maintaining and debugging PL/SQL program code.

Oracle9i: SQL for End Usersis directed towards individual s with little programming background

and coversbasic SQL statements. This courseisfor end users who need to know some basic SQL
programming.

Oracle9i: Advanced PL/SQL is appropriate for individuals who have experience in PL/SQL
programming and covers coding efficiency topics, object-oriented programming, working with
external code, and the advanced features of the Oracle supplied packages.

Oracle9i: PL/SQL Fundamentals 3

Languages Curriculum for Oracle9i

Introduction to , : Oracle9i: SQL for
Oracle9i: SQL or IntroducUoan:o Oracle9i End Users
Introduction Oracle9i: Experienced SQL Users inClass
to Oracle9i: Advanced
SQL Basics SQL
- inClass
inClass

I_l_l

Oracle9i: Program with PL/SQL

Oracle9i: PL/SQL
Fundamentals

Oracle9i: Develop PL/SQL
Program Units

inClass

Oracle9i: Advanced PL/SQL
inClass

‘ Copyright © Oracle Corporation, 2001. All rights reserved.

Integrated Languages Curriculum

The dide lists various modules and courses that are available in the languages curriculum. The
following table lists the modules and courses with their equivalent TBTs.

Course or Module

Equivalent TBT

Introduction to Oracledi: SQL
Basics

Oracle SQL: Basic SELECT Satements
Oracle SQL: Data Retrieval Techniques
Oracle SQL: DML and DDL

Oracle9i: Advanced QL

Oracle SQL and SQL*Plus: Advanced SELECT Statements
Oracle SQL and SQL*Plus: SQL*Plus and Reporting

Introduction to Oracle9i for
Experienced SQL Users

Oracle SQL Secifics: Retrieving and Formatting Data
Oracle QL Specifics. Creating and Managing Database Objects

Oracle9i: PL/SQL Fundamentals

PL/SQL: Basics

Oracle9i: Develop PL/SQL
Program Units

PL/SQL: Procedures, Functions, and Packages
PL/SQL: Database Programming

Oracle9i: QL for End Users

QL for End Users: Part 1
L for End Users: Part 2

Oraclei: Advanced PL/SQL

Advanced PL/SQL: Implementation and Advanced Features
Advanced PL/SQL: Design Considerations and Object Types

Oracle9i: PL/SQL Fundamentals 4

Overview of PL/SQL

Copyright © Oracle Corporation, 2001. All rights reserved.

Course Objectives

After completing this lesson, you should be able to
do the following:

®* Describe the purpose of PL/SQL

®* Describe the use of PL/SQL for the developer as
well as the DBA

* Explain the benefits of PL/SQL

Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this course, you are introduced to the features and benefits of PL/SQL. Y ou learn how to accessthe
database using PL/SQL .

Oracle9i: PL/SQL Fundamentals I-2

About PL/SQL

® PL/SQL is the procedural extension to SQL with
design features of programming languages.

e Data manipulation and query statements of SQL
are included within procedural units of code.

Copyright © Oracle Corporation, 2001. All rights reserved.

About PL/SQL

Procedural Language/SQL (PL/SQL) is Oracle Corporation’s procedura language extension to SQL, the
standard data access language for relational databases. PL/SQL offers modern software engineering
features such as data encapsulation, exception handling, information hiding, object orientation, and
brings state-of-the-art programming to the Oracle Server and tool set.

PL/SQL incorporates many of the advanced features of programming languages that were designed
during the 1970s and 1980s. It alows the data manipulation and query statements of SQL to be included
in block-structured and procedural units of code, making PL/SQL a powerful transaction processing
language. With PL/SQL, you can use SQL statements to finesse Oracle data, and PL/SQL control
statements to process the data.

Oracle9i: PL/SQL Fundamentals I-3

PL/SQL Environment

Procedural
PL/SQL PL/SQL statement
block block executor

Y

SQL statement executor

Oracle server
N J

Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Environment

PL/SQL isnot an Oracle product in its own right; it is atechnology used by the Oracle server and by
certain Oracletools. Blocks of PL/SQL are passed to and processed by a PL/SQL engine, which may
reside within the tool or within the Oracle server. The engine that is used depends on where the PL/SQL
block is being invoked from.

When you submit PL/SQL blocks from a Oracle precompiler such as Pro* C or Pro* Cobol program, user-
exit, iISQL*Plus, or Server Manager, the PL/SQL engine in the Oracle Server processes them. It separates
the SQL statements and sends them individually to the SQL statements executor.

A singletransfer is required to send the block from the application to the Oracle Server, thusimproving
performance, especialy in a client-server network. PL/SQL code can also be stored in the Oracle Server as
subprograms that can be referenced by any number of applications connected to the database.

Oracle9i: PL/SQL Fundamentals 1-4

Benefits of PL/SQL

Integration e @ ‘@1
| [= |—
| |
_—
Application
\ 4 \4
Shared Oracle server

library

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL
Integration

PL/SQL plays a central rolein both the Oracle server (through stored procedures, stored functions,
database triggers, and packages) and Oracle devel opment tools (through Oracle Devel oper component
triggers).

Oracle Forms Developer, Oracle Reports Devel oper, and Oracle Graphics Devel oper applications make
use of shared libraries that hold code (procedures and functions) and can be accessed locally or remotely.

SQL datatypes can aso be used in PL/SQL. Combined with the direct access that SQL provides, these
shared data types integrate PL/SQL with the Oracle server data dictionary. PL/SQL bridges the gap
between convenient access to database technology and the need for procedura programming capabilities.

PL/SQL in Oracle Tools

Many Oracle tools, including Oracle Developer, have their own PL/SQL engine, which is independent of
the engine present in the Oracle Server.

The enginefilters out SQL statements and sends them individually to the SQL statement executor in the
Oracle server. It processes the remaining procedural statementsin the procedural statement executor,
whichisinthe PL/SQL engine.

Oracle9i: PL/SQL Fundamentals I-5

Benefits of PL/SQL

Improved performance

—sQL >

< SQL -

5 Other DBMSs

Oracle with
PL/SQL

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
PL/SQL in Oracle Tools (continued)

The procedural statement executor processes data that islocal to the application (that is, data already
inside the client environment, rather than in the database). This reduces the work that is sent to the Oracle
server and the number of memory cursors that are required.

Improved Performance

PL/SQL can improve the performance of an application. The benefits differ depending on the execution
environment.

» PL/SQL can be used to group SQL statements together within asingle block and to send the
entire block to the server in asingle call, thereby reducing networking traffic. Without PL/SQL, the
SQL statements are sent to the Oracle server one at atime. Each SQL statement results in another
call to the Oracle server and higher performance overhead. In a networked environment, the
overhead can become significant. Asthe dideillustrates, if the application is SQL intensive, you
can use PL/SQL blocks and subprograms to group SQL statements before sending them to the
Oracle server for execution.

* PL/SQL can aso operate with Oracle Server application development tools such as Oracle Forms
and Oracle Reports. By adding procedura processing power to these tools, PL/SQL enhances
performance.

Oracle9i: PL/SQL Fundamentals 1-6

Benefits of PL/SQL

Modularize program development

CLARE

BEGIN

EXCEPTION

END;

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Improved Performance (continued)

Note: Procedures and functions that are declared as part of a Oracle Forms or Reports Devel oper
application are distinct from those stored in the database, although their general structure isthe same.
Stored subprograms are database objects and are stored in the data dictionary. They can be accessed by
any number of applications, including Oracle Forms or Reports Devel oper applications.

Y ou can take advantage of the procedural capabilities of PL/SQL, which are not availablein SQL.
PL/SQL Block Structure

Every unit of PL/SQL comprises one or more blocks. These blocks can be entirely separate or nested one
within another. The basic units (procedures, functions, and anonymous blocks) that make up a PL/SQL
program are logica blocks, which can contain any number of nested subblocks. Therefore, one block can
represent asmall part of another block, which in turn can be part of the whole unit of code.

Modularized Program Development
e Group logicaly related statements within blocks.

* Nest subblocksinside larger blocks to build powerful programs.

Oracle9i: PL/SQL Fundamentals I-7

Benefits of PL/SQL

* PL/SQL is portable.
® You can declare variables.

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Modularized Program Development (continued)

» Break down a complex problem into a set of manageable, well-defined, logical modules and
implement the modules with blocks.

» Placereusable PL/SQL codein libraries to be shared between Oracle Forms and Oracle Reports
applications or storeit in an Oracle server to make it accessible to any application that can interact
with an Oracle database.

Portability

* Because PL/SQL isnativeto the Oracle server, you can move programsto any host environment
(operating system or platform) that supports the Oracle server and PL/SQL. In other words,
PL/SQL programs can run anywhere the Oracle server can run; you do not need to tailor themto
each new environment.

* You can aso move code between the Oracle server and your application. Y ou can write portable
program packages and create libraries that can be reused in different environments.

Oracle9i: PL/SQL Fundamentals I-8

Benefits of PL/SQL

®* You can program with procedural language
control structures.

® PL/SQL can handle errors.

Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Procedural Language Control Structures:

Procedura Language Control Structures alow you to do the following:
» Execute a sequence of statements conditionally

» Execute a sequence of statementsiteratively in aloop
» Processindividually the rows returned by a multiple-row query with an explicit cursor

Errors:
The Error handling functionality in PL/SQL allows you to do the following:
* Process Oracle server errors with exception-handling routines

» Declare user-defined error conditions and process them with exception-handling routines

Oracle9i: PL/SQL Fundamentals I-9

Summary

® PL/SQL is an extension to SQL.

®* Blocks of PL/SQL code are passed to and
processed by a PL/SQL engine.

®* Benefits of PL/SQL:
— Integration
— Improved performance
— Portability
— Modularity of program development

Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

PL/SQL isalanguage that has programming features that serve as an extension to SQL. It provides you
with the ability to control the flow of constructs, and declare and use variables. PL/SQL applications can
run on any platform or operating system on which Oracle runs.

Oracle9i: PL/SQL Fundamentals I-10

Declaring Variables

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Recognize the basic PL/SQL block and its sections
®* Describe the significance of variables in PL/SQL

®* Declare PL/SQL variables

e Execute a PL/SQL block

1-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

Thislesson presents the basic rules and structure for writing and executing PL/SQL blocks of code.
It also shows you how to declare variables and assign data types to them.

Oracle9i: PL/SQL Fundamentals 1-2

PL/SQL Block Structure

DECLARE (Optional)
Variables, cursors, user-defined exceptions
BEAQ N (Mandatory)
— SQL statements
— PL/SQL statements
EXCEPTI ON (Optional)
Actions to perform when errors occur
END; (Mandatory)

CLARE

BEG N
[

EXCEPTI ON

END;

1-3 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Block Structure

PL/SQL is ablock-structured language, meaning that programs can be divided into logical blocks. A
PL/SQL block consists of up to three sections: declarative (optional), executable (required), and
exception handling (optional). The following table describes the three sections:

Section Description Inclusion

Declarative Contains al variables, constants, cursors, and Optional
user-defined exceptions that are referenced in the
executable and declarative sections

Executable Contains SQL statements to manipulate datain Mandatory
the database and PL/SQL statementsto
manipulate datain the block

Exception Specifies the actions to perform when errorsand | Optional
handling abnormal conditions arise in the executable
section

Oracle9i: PL/SQL Fundamentals 1-3

1-4

Executing Statements and PL/SQL Blocks

DECLARE

v_variabl e VARCHAR2(5);
BEG N

SELECT col um_narne

| NTOv_vari abl e

FROMt abl e_nane;
EXCEPTI ON

VWHEN excepti on_nanme THEN

=

BEG N

[o0 |

EXCEPTI ON
END,; i

Copyright © Oracle Corporation, 2001. All rights reserved.

END;

Executing Statements and PL/SQL Blocks

Place a semicolon (;) at the end of a SQL statement or PL/SQL control statement.

When the block is executed successfully, without unhandled errors or compile errors, the
message output should be as follows:

PLIZQL procedure successfully completed.

Section keywords DECLARE, BEA N, and EXCEPTI ON are not followed by semicolons.
END and all other PL/SQL statements require a semicolon to terminate the statement.

Y ou can string statements together on the same line, but this method is not recommended for
clarity or editing.

Note: In PL/SQL, an error is called an exception.

With modularity you can break an application down into manageable, well-defined modules.
Through successive refinement, you can reduce a complex problem to a set of simple problems that
have easy-to-implement solutions. PL/SQL meets this need with program units, which include
blocks, subprograms, and packages.

Oracle9i: PL/SQL Fundamentals 1-4

Block Types

Anonymous Procedure Function
[DECLARE] PROCEDURE narne FUNCTI ON nane
IS RETURN dat at ype
IS
BEG N BEG N BEG N
--statenents --statenents --statenents
RETURN val ue;
[EXCEPTI QN [EXCEPTI QN [EXCEPTI ON]
END; END; END;
1-5 Copyright © Oracle Corporation, 2001. All rights reserved.
Block Types

A PL/SQL program comprises one or more blocks. These blocks can be entirely separate or nested
one within another. The basic units (procedures and functions, aso known as subprograms, and
anonymous blocks) that make up a PL/SQL program are logical blocks, which can contain any
number of nested subblocks. Therefore, one block can represent asmall part of another block, which
in turn can be part of the whole unit of code.

Anonymous Blocks

Anonymous blocks are unnamed blocks. They are declared at the point in an application where they
are to be executed and are passed to the PL/SQL engine for execution at run time. Y ou can embed
an anonymous block within a precompiler program and within iSQL*Plus or Server Manager.
Triggersin Oracle Devel oper components consist of such blocks.

Subprograms

Subprograms are named PL/SQL blocks that can accept parameters and can be invoked. Y ou can
declare them either as procedures or as functions. Generally use a procedure to perform an action
and a function to compute a value.

Y ou can store subprograms at the server or application level. Using Oracle Developer components
(Forms, Reports, and Graphics), you can declare procedures and functions as part of the application
(aform or report) and call them from other procedures, functions, and triggers (see next page) within
the same application whenever necessary.

Note: A function is similar to a procedure, except that a function must return avalue.

Oracle9i: PL/SQL Fundamentals 1-5

Program Constructs

CLARE
BEG N
[een]
EXCEPTI ON
END;
Tools Constructs Database Server
Anonymous blocks Constructs

Application procedures or
functions

Anonymous blocks

Application packages

Stored procedures or

functions

Application triggers

Stored packages

Object types

Databasetriggers

1-6

Object types

Copyright © Oracle Corporation, 2001. All rights reserved.

Program Constructs

The following table outlines a variety of different PL/SQL program constructs that use the basic
PL/SQL block. The program constructs are available based on the environment in which they are

executed.

Program
Construct

Description

Availability

Anonymous blocks

Unnamed PL/SQL blocks that are embedded within an
application or are issued interactively

All PL/SQL environments

Application
procedures or
functions

Named PL/SQL blocks stored in an Oracle Forms
Developer application or shared library; can accept
parameters and can be invoked repeatedly by name

Oracle Developer tools components,
for example, Oracle Forms
Developer, Oracle Reports

Stored procedures
or functions

Named PL/SQL blocks stored in the Oracle server; can
accept parameters and can be invoked repeatedly by
name

Oracle server

Packages
(Application or
Stored)

Named PL/SQL modules that group related
procedures, functions, and identifiers

Oracle server and Oracle Developer
tools components, for example,
Oracle Forms Developer

Database triggers

PL/SQL blocks that are associated with a database
table and fired automatically when triggered by DM L
statements

Oracle server

data structure along with the functions and procedures
needed to manipulate the data

Application PL/SQL blocks that are associated with an application | Oracle Developer tools components,
triggers event and fired automatically for example, Oracle Forms Developer
Object types User-defined composite data types that encapsulate a Oracle server and Oracle Developer

tools

Oracle9i: PL/SQL Fundamentals 1-6

Use of Variables

Variables can be used for:

® Temporary storage of data

®* Manipulation of stored values
* Reusability

* Ease of maintenance

1-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Use of Variables

With PL/SQL you can declare variables and then use them in SQL and procedura statements
anywhere that an expression can be used. Variables can be used for the following:

e Temporary storage of data: Data can be temporarily stored in one or more variables for use
when validating datainput and for processing later in the data flow process.

» Manipulation of stored values: Variables can be used for calculations and other data
mani pul ations without accessing the database.

* Reusability: After they are declared, variables can be used repeatedly in an application smply
by referencing them in other statements, including other declarative statements.

» Ease of maintenance: When using % YPE and RO YPE (more information on YRON YPE
is covered in a subsequent lesson), you declare variables, basing the declarations on the
definitions of database columns. If an underlying definition changes, the variable declaration
changes accordingly at run time. This provides data independence, reduces maintenance costs,
and allows programs to adapt as the database changes to meet new business needs. More
information on % YPE is covered later in thislesson.

Oracle9i: PL/SQL Fundamentals 1-7

Handling Variables in PL/SQL

* Declare and initialize variables in the declaration

section.

®* Assign new values to variables in the executable
section.

®* Pass values into PL/SQL blocks through
parameters.

* View results through output variables.

1-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Handling Variables in PL/SQL
Declare and Initialize Variablesin the Declar ation Section

Y ou can declare variables in the declarative part of any PL/SQL block, subprogram, or package.
Declarations alocate storage space for avalue, specify its datatype, and name the storage location
so that you can referenceit. Declarations can also assign an initial value and impose the NOT NULL
constraint on the variable. Forward references are not allowed. Y ou must declare a variable before
referencing it in other statements, including other declarative statements.

Assign New Valuesto Variablesin the Executable Section

In the executable section, the existing value of the variableis replaced with the new value that is
assigned to the variable.

Pass Values Into PL/SQL Subprograms Through Parameters

There are three parameter modes, | N (the default), OUT, and | N OUT. Use the | N parameter to pass
values to the subprogram being called. Use the QUT parameter to return valuesto the caller of a
subprogram. And usethe | N OUT parameter to passinitia values to the subprogram being called
and to return updated values to the caller. We pass values into anonymous block viaiSQL*PLUS
substitution variables.

Note: Viewing the results from a PL/SQL block through output variablesis discussed later in the
lesson.

Oracle9i: PL/SQL Fundamentals 1-8

Types of Variables

* PL/SQL variables:
— Scalar
— Composite
— Reference
— LOB (large objects)
®* Non-PL/SQL variables: Bind and host variables

1-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Variables

All PL/SQL variables have a data type, which specifies a storage format, constraints, and valid range
of values. PL/SQL supports four data type categories—scalar, composite, reference, and LOB (large
object)—that you can use for declaring variables, constants, and pointers.

» Scaar datatypes hold asingle value. The main datatypes are those that correspond to column
typesin Oracle server tables; PL/SQL also supports Boolean variables.

» Composite datatypes, such asrecords, allow groups of fields to be defined and manipulated in
PL/SQL blocks.

» Reference datatypes hold values, called pointers, that designate other program items.
Reference data types are not covered in this course.

« LOB datatypes hold vaues, called locators, that specify the location of large objects (such as

graphic images) that are stored out of line. LOB data types are discussed in detail later in this
course.

Non-PL/SQL variables include host language variables declared in precompiler programs, screen
fields in Forms applications, and iSQL* Plus host variables.

For more information on LOBs, see PL/SQL User’s Guide and Reference, “ Fundamentals.”

Oracle9i: PL/SQL Fundamentals 1-9

Using iISQL*Plus Variables Within PL/SQL
Blocks

®* PL/SQL does not have input or output capability of
its own.

®* You can reference substitution variables within a
PL/SQL block with a preceding ampersand.

®* iSQL*Plus host (or “bind”) variables can be used

to pass run time values out of the PL/SQL block
back to the iSQL*Plus environment.

1-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using iSQL*Plus Variables Within PL/SQL Blocks

PL/SQL does not have input or output capability of its own. Y ou must rely on the environment in
which PL/SQL is executing to pass vaues into and out of a PL/SQL block.

In the i SQL* Plus environment, i SQL* Plus substitution variables can be used to pass run time values
into aPL/SQL block. Y ou can reference substitution variables within a PL/SQL block with a
preceding ampersand in the same manner as you reference i SQL* Plus substitution variablesin a
SQL statement. The text values are substituted into the PL/SQL block beforethe PL/SQL block is
executed. Therefore you cannot substitute different values for the substitution variables by using a
loop. Only one vaue will replace the substitution variable.

iSQL*Plus host variables can be used to pass run-time values out of the PL/SQL block back to the
iSQL* Plus environment. Y ou can reference host variablesin a PL/SQL block with a preceding
colon. Bind variables are discussed in further detail later in this lesson.

Oracle9i: PL/SQL Fundamentals 1-10

Types of Variables

25-JAN-01

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nation,
concei ved in LIBERTY, and dedi cated

25612008 to the proposition that all nen

are created equal .”

1-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Variables
The dideillustrates the following variable data types:

* TRUE represents a Boolean value.
e 25-JAN-01 represents a DATE.
» The photograph represents a BLOB.
» Thetext of aspeech represents a LONG
» 256120.08 represents a NUMBER data type with precision and scale.
* Themovierepresents a BFI LE.
» Thecity name, Atlanta, represents a VARCHAR2.

Oracle9i: PL/SQL Fundamentals 1-11

Declaring PL/SQL Variables

Syntax:
i dentifier [CONSTANT] datatype [NOT NULL]
[:=] DEFAULT expr];

Examples:

DECLARE
v_hiredate DATE;
v_dept no NUVBER(2) NOT NULL := 10;
v_l ocation VARCHAR2(13) := "Atlanta’;
c_conmm CONSTANT NUMBER : = 1400;

1-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring PL/SQL Variables

You must declare all PL/SQL identifiersin the declaration section before referencing themin the
PL/SQL block. Y ou have the option to assign an initial value to avariable. Y ou do not need to
assign avalueto avariablein order to declareit. If you refer to other variablesin a declaration, you
must be sure to declare them separately in a previous statement.

In the syntax:
identifier
CONSTANT
data type

NOT NULL

expr

is the name of the variable.

constrains the variable so that its value cannot change; constants
must beinitialized.

isascaar, composite, reference, or LOB datatype. (This course
covers only scalar, composite, and LOB data types.)

constrains the variable so that it must contain avalue. (NOT NULL
variables must beinitialized.)

isany PL/SQL expression that can be a literal expression, another
variable, or an expression involving operators and functions.

Oracle9i: PL/SQL Fundamentals 1-12

Guidelines for Declaring PL/SQL Variables

®* Follow naming conventions.

* |nitialize variables designated as NOT NULL and
CONSTANT.

* Declare one identifier per line.

* Initialize identifiers by using the assignment
operator (: =) or the DEFAULT reserved word.

identifier := expr;

1-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Declaring PL/SQL Variables

Here are some guidelines to follow while declaring PL/SQL variables:
* Nametheidentifier according to the same rules used for SQL objects.

» You can use naming conventions—for example, v_name to represent a variable and ¢_name to
represent a constant variable.

e If youusethe NOT NULL constraint, you must assign a value.
» Declaring only one identifier per line makes code easier to read and maintain.

* In constant declarations, the keyword CONSTANT must precede the type specifier. The
following declaration names a constant of NUMBER subtype REAL and assigns the value of
50000 to the constant. A constant must be initiaized in its declaration; otherwise, you get a
compilation error when the declaration is elaborated (compiled).

v_sal CONSTANT REAL : = 50000. 00;

« Initiaize the variable to an expression with the assignment operator (: =) or, equivaently, with
the DEFAULT reserved word. If you do not assign an initia value, the new variable contains
NULL by default until you assign avalue later. To assign or reassign avalue to avariable, you
write a PL/SQL assignment statement. Y ou must explicitly name the variable to receive the
new value to the left of the assignment operator (: =). It is good programming practice to
initialize all variables.

Oracle9i: PL/SQL Fundamentals 1-13

Naming Rules

* Two variables can have the same name, provided they
are in different blocks.

* The variable name (identifier) should not be the same
as the name of table columns used in the block.

DECLARE
enpl oyee _id NUVBER(6); A i

BEG N doptaljamlng
SELECT [enployee id convention for
I NTO enpl oyee_i d PL/SQL identifiers:
FROM enpl oyees
VWHERE | ast _name = ' Kochhar’; for examplef

END; v_employee id

/

1-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Rules

Two objects can have the same name, provided that they are defined in different blocks. Where they
coexigt, only the object declared in the current block can be used.

Y ou should not choose the same name (identifier) for a variable as the name of table columns used
in the block. If PL/SQL variables occur in SQL statements and have the same name as a column, the
Oracle server assumesthat it is the column that is being referenced. Although the example codein
the dide works, code that is written using the same name for a database table and variable name is
not easy to read or maintain.

Consider adopting a naming convention for various objects that are declared in the DECLARE
section of the PL/SQL block. Using v__ as a prefix representing variable avoids naming conflicts
with database objects.

DECLARE
v_hire_date date;
BEG N

Note: The names of the variables must not be longer than 30 characters. The first character must be
aletter; the remaining characters can be letters, numbers, or special symbols.

Oracle9i: PL/SQL Fundamentals 1-14

Variable Initialization and Keywords

* Assignment operator (: =)
* DEFAULT keyword
* NOT NULL constraint

Syntax:
identifier := expr;
Examples:
v_hiredate := '01-JAN 2001’ ;
v_enane : = 'Mduro’;
1-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Variable Initialization and Keywords

In the syntax:
identifier isthe name of the scalar variable.
expr can be avariable, literal, or function cal, but not a database column.

The variable value assignment examples are defined as follows:
» Settheidentifier V_H REDATE to avaue of 01-JAN-2001.
e Storethe name “Maduro” in the V_ENANME identifier.

Variables are initialized every time a block or subprogram is entered. By default, variables are
initialized to NULL. Unless you explicitly initialize avariable, its value 1s undefined.

Use the assignment operator (:=) for variables that have no typical vaue.
v_hire_date :="15- SEP- 1999’

Note: Thisfour-digit value for year, YY Y'Y, assignment is possible only in Oracle8i and later.
Previous versions may require the use of the TO_DATE function.

DEFAULT: Y ou can use the DEFAULT keyword instead of the assignment operator to initialize
variables. Use DEFAULT for variablesthat have atypical value.

v_ngr NUMBER(6) DEFAULT 100;
NOT NULL: Imposethe NOT NULL constraint when the variable must contain avalue.

Y ou cannot assign nullsto a variable defined as NOT NULL. The NOT NULL constraint must be
followed by an initialization clause.

vV_City VARCHAR2(30) NOT NULL := 'Oxford

Oracle9i: PL/SQL Fundamentals 1-15

Variable Initialization and Keywords (continued)

Note: String literals must be enclosed in single quotation marks. For example,” Hel | o, wor | d’ .
If thereis a single quotation mark in the string, use a single quotation mark twice—for example, to
insert avaue FISHERMAN' S DRIVE, the string would be” FI SHERVMAN * S DRI VE' .

Another way to assign values to variablesis to select or fetch database vauesinto it. The following
example computes a 10% bonus for the employee with the EMPLOYEE | D 176 and assignsthe
computed valueto thev_bonus variable. Thisis done using the | NTOclause.

DECLARE
v_bonus NUMBER(S8, 2);

BEG N

SELECT salary * 0.10

| NTO v_bonus

FROM enpl oyees

WHERE enpl oyee_id = 176;
END;

/

Then you can usethe variable v_bonus in another computation or insert its value into a database
table.

Note: To assign avalue into a variable from the database, use a SELECT or FETCH statement. The
FETCH statement is covered later in this course.

Oracle9i: PL/SQL Fundamentals 1-16

Scalar Data Types

* Hold asingle value
®* Have no internal components

25-0CT-9
“Four score and seve
ago our fathers bro:ﬁﬁ

forth upon this continent, a

new nati on, conceived in
256120.08 | LiBERTY, and dedicated to
the proposition that all
are created

1-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Scalar Data Types

Every constant, variable, and parameter has a data type (or type), which specifies a storage format,
constraints, and valid range of values. PL/SQL provides a variety of predefined data types. For
instance, you can choose from integer, floating point, character, Boolean, date, collection, reference,
and LOB types. In addition, This chapter coversthe basic typesthat are used frequently in PL/SQL
programs. Later chapters cover the more specialized types.

A scalar data type holds asingle value and has no internal components. Scalar data types can be
classified into four categories: number, character, date, and Boolean. Character and number data
types have subtypes that associate a base type to a constraint. For example, | NTEGER and

POSI Tl VE are subtypes of the NUVBER base type.

For more information and the complete list of scalar data types, refer to PL/SQL User’s Guide and
Reference, “ Fundamentals.”

Oracle9i: PL/SQL Fundamentals 1-17

Base Scalar Data Types

* CHAR [(maxi mum_| engt h)]

* VARCHARZ2 (maxi mum | engt h)

* LONG

* LONG RAW

* NUMBER [(precision, scale)]
* BI NARY_I NTEGER

* PLS I NTEGER

e BOCOLEAN

1-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Base Scalar Data Types

Data Type Description

CHAR _ Base type for fixed-length character data up to 32,767 bytes. If you do
[(maxi mum_| engt h)] | not specify amaximum_length, the default length is set to 1.
VARCHAR2 Base type for variable-length character data up to 32,767 bytes. There
(maximum_|ength) is no default size for VARCHAR? variables and constants.

LONG Base type for variable-length character data up to 32,760 bytes. Use

the L ONG data type to store variable-length character strings. Y ou can
insert any L ONG value into a L ONG database column because the
maximum width of a LONG column is 2** 31 bytes. However, you
cannot retrieve avalue

longer than 32760 bytes from a L ONG column into a L ONG variable.

LONG RAW Base type for binary data and byte strings up to 32,760 bytes. L ONG
RAWdata is not interpreted by PL/SQL.

NUMBER Number having precision p and scale s. The precision p can range

[(precision, scale)] from 1 to 38. The scale s can range from -84 to 127.

Oracle9i: PL/SQL Fundamentals 1-18

Base Scalar Data types (continued)

Data Type

Description

Bl NARY_| NTECER

Base type for integers between -2,147,483,647 and 2,147,483,647.

PLS_| NTEGER Base type for signed integers between -2,147,483,647 and
2,147,483,647. PLS | NTEGER values require less storage and are
faster than NUMBER and Bl NARY _| NTEGER values.

BOOLEAN Base type that stores one of three possible values used for logical

caculations: TRUE, FALSE, or NULL.

Oracle9i: PL/SQL Fundamentals 1-19

Base Scalar Data Types

e DATE

e TI MESTAWP

e TIMESTAMP WTH TI ME ZONE

e TIMESTAMP WTH LOCAL TI ME ZONE

e |INTERVAL YEAR TO MONTH
e | NTERVAL DAY TO SECOND
1-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Base Scalar Data Types (continued)

Data Type Description

DATE Base type for dates and times. DATE values include the time of day in seconds
since midnight. The range for dates is between 4712 B.C. and 9999 A.D.

TI MESTAMP The TI MESTAMP data type, which extends the DATE data type, stores the year,
month, day, hour, minute, and second. The syntax is:

TI MESTAMP[(precision)]

where the optional parameter precision specifies the number of digitsin the
fractional part of the seconds field. Y ou cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range
0..9. The default is 6.

TI MESTAMP W TH The TI MESTAMP W TH TI ME ZONE data type, which extends the

TI ME ZONE TI MESTAMP data type, includes a time-zone displacement. The time-zone
displacement is the difference (in hours and minutes) between local time and
Coordinated Universal Time (UTC), formerly known as Greenwich M ean Time.
The syntax is:

TI MESTAMP[(precision)] WTH TI ME ZONE

where the optional parameter precision specifies the number of digitsin the
fractional part of the seconds field. Y ou cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in therange O ..
9. The default is 6.

Oracle9i: PL/SQL Fundamentals 1-20

Base Scalar Data Types (continued)

Data Type

Description

TI MESTAMP W TH
LOCAL TI ME ZONE

The TI MESTAMP W TH LOCAL Tl ME ZONE datatype, which extends
the TI MESTAMP data type, includes a time-zone displacement. The time-
zone displacement is the difference (in hours and minutes) between local
time and Coordinated Universal Time (UTC)—formerly Greenwich Mean
Time. The syntax is:

TI MESTAMP[(precision)] WTH LOCAL TI ME ZONE

where the optional parameter precision specifies the number of digitsin the
fractional part of the seconds field. Y ou cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range 0
.. 9. The default is 6.

This data type differs from TI MESTAMP W TH TI ME ZONE in that when
you insert a value into a database column, the value is normalized to the
database time zone, and the time-zone displacement is not stored in the
column. When you retrieve the value, Oracle returns the value in your local
session time zone.

| NTERVAL YEAR
TO MONTH

You usethel NTERVAL YEAR TO MONTH datatype to store and

manipulate intervals of years and months. The syntax is:
| NTERVAL YEAR[(precision)] TO MONTH

whereyear s_pr eci si on specifies the number of digitsin the years field.
Y ou cannot use a symbolic constant or variable to specify the precision; you
must use an integer literal intherange 0 .. 4. The default is 2.

| NTERVAL DAY TO
SECOND

You usethel NTERVAL DAY TO SECOND datatype to store and
manipulate intervals of days, hours, minutes, and seconds. The syntax is:

| NTERVAL DAY[(precisionl)] TO SECOND| (precision2)]
where pr eci si onl and pr eci si on2 specify the number of digitsin the
daysfield and seconds field, respectively. In both cases, you cannot use a
symbolic constant or variable to specify the precision; you must use an
integer literal in the range 0 .. 9.The defaults are 2 and 6, respectively.

Oracle9i: PL/SQL Fundamentals 1-21

Scalar Variable Declarations

Examples:

DECLARE
v_j ob VARCHAR2(9) ;
v_count Bl NARY_| NTEGER : = O;
v_total _sal NUMBER(9, 2) : = O;
v_orderdate DATE : = SYSDATE + 7;
c_tax_rate CONSTANT NUMBER(3, 2) : = 8.25;
v_valid BOOLEAN NOT NULL : = TRUE;

1-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Scalar Variables
The examples of variable declaration shown on the dide are defined asfollows:

e Vv_j ob: variable to store an employee job title
e Vv_count : variable to count theiterations of aloop and initialized to O
e v_total _sal : variableto accumulate the total salary for a department and initialized to O

e v_order dat e: variable to store the ship date of an order and initialize to one week from
today

» C_tax_rate: aconstant variable for the tax rate, which never changes throughout the
PL/SQL block

v_val i d: flag to indicate whether a piece of dataisvalid or invalid and initialized to TRUE

Oracle9i: PL/SQL Fundamentals 1-22

The %' YPE Attribute

®* Declare a variable according to:
— A database column definition
— Another previously declared variable
* Prefix %9 YPE with:
— The database table and column
— The previously declared variable name

1-23 Copyright © Oracle Corporation, 2001. All rights reserved.

The %' YPE Attribute

When you declare PL/SQL variablesto hold column values, you must ensure that the variable is of
the correct datatype and precision. If itisnot, aPL/SQL error will occur during execution.

Rather than hard coding the data type and precision of a variable, you can use the % YPE attribute to
declare a variable according to another previoudy declared variable or database column. The %9 YPE
attribute is most often used when the value stored in the variable will be derived from atablein the
database. To use the attribute in place of the datatype that is required in the variable declaration,
prefix it with the database table and column name. If referring to a previoudy declared variable,
prefix the variable name to the attribute.

PL/SQL determines the data type and size of the variable when the block is compiled so that such
variables are always compatible with the column that is used to populate it. Thisis a definite
advantage for writing and maintaining code, because there is no need to be concerned with column
data type changes made at the database level. Y ou can also declare a variable according to another
previoudy declared variable by prefixing the variable name to the attribute.

Oracle9i: PL/SQL Fundamentals 1-23

Declaring Variables
with the %' YPE Attribute

Syntax:
identifier Tabl e. col unmm_name%l YPE;
Examples:
V_hame enpl oyees. | ast _nanme%l YPE;
v_bal ance NUMBER(7, 2) ;
v_m n_bal ance v_bal ance%YPE : = 10;
1-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Variables with the %0 YPE Attribute

Declare variables to store the last name of an employee. The variable v__nane is defined to be of the
same data type asthe LAST_NANME column in the EMPLOYEES table. % YPE provides the data type
of adatabase column:

§/'_'name enpl oyees. | ast _nane%l'YPE;

Declare variables to store the balance of a bank account, as well as the minimum balance, which
startsout as 10. Thevariablev_m n_bal ance is defined to be of the same datatype asthe
variablev_bal ance. %' YPE providesthe datatype of avariable:

v_bal ance NUMBER(7, 2) ;
v_m n_bal ance v_bal ance% YPE : = 10;

A NOT NULL database column constraint does not apply to variables that are declared using
%' YPE. Therefore, if you declare a variable using the % YPE attribute that uses a database column
defined as NOT NULL, you can assign the NULL value to the variable.

Oracle9i: PL/SQL Fundamentals 1-24

Declaring Boolean Variables

®* Only the values TRUE, FALSE, and NULL can be
assigned to a Boolean variable.

®* The variables are compared by the logical
operators AND, OR, and NOT.

* The variables always yield TRUE, FALSE, or NULL.

* Arithmetic, character, and date expressions can be
used to return a Boolean value.

1-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Boolean Variables

With PL/SQL you can compare variablesin both SQL and procedural statements. These
comparisons, called Boolean expressions, consist of simple or complex expressions separated by
relational operators. In a SQL statement, you can use Boolean expressions to specify therowsin a
table that are affected by the statement. In a procedura statement, Boolean expressions are the basis
for conditional control. NULL stands for a missing, inapplicable, or unknown value.

Examples

v_sal 1 := 50000;
v_sal 2 : = 60000;

The following expression yields TRUE:
v_sall < v_sal?2

Declare and initialize a Boolean variable;

DECLARE

v_flag BOOLEAN : = FALSE;
BEG N

v_flag : = TRUE;
END;

Oracle9i: PL/SQL Fundamentals 1-25

Composite Data Types

TRUE | 23- DEC-98

PL/SQL table structure PL/SQL table structure
1 SM TH 1 5000
2 JONES 2 2345
3 NANCY 3 12
TI M 4 3456

i Lo | L e

Bl NARY_| NTEGER Bl NARY | NTEGER

1-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Composite Data Types

A scalar type has no internal components. A composite type has internal components that can be
manipul ated individually. Composite data types (also known as collections) are of TABLE,
RECORD, NESTED TABLE, and VARRAY types. Use the RECORD data type to treat related but
dissimilar data as alogical unit. Use the TABLE data type to reference and manipulate collections of
data as awhole object. Both RECORD and TABLE data types are covered in detail in a subsequent
lesson. NESTED TABLE and VARRAY data types are covered in the Advanced PL/SQL course.

For more information, see PL/SQL User’s Guide and Reference, “ Collections and Records.”

Oracle9i: PL/SQL Fundamentals 1-26

LOB Data Type Variables

\ Photo
/ (BLOB)
\ Movie
| (BFI LE)

L () nocs

1-27 Copyright © Oracle Corporation, 2001. All rights reserved.

LOB Data Type Variables

With the LOB (large object) data types you can store blocks of unstructured data (such astext,
graphic images, video clips, and sound wave forms) up to 4 gigabytesin size. LOB data types allow
efficient, random, piecewise access to the data and can be attributes of an object type. LOBs also
support random access to data.

» The CLOB (character large object) datatype is used to store large blocks of single-byte
character datain the database in line (inside the row) or out of line (outside the row).

« The BLOB (binary large object) datatype is used to store large binary objectsin the database
in line (inside the row) or out of line (outside the row).

« TheBFI LE (binary file) datatypeis used to store large binary objectsin operating system
files outside the database.

 TheNCLOB (national language character large object) datatypeis used to store large blocks
of single-byte or fixed-width multibyte NCHAR unicode data in the database, in line or out of
line.

Oracle9i: PL/SQL Fundamentals 1-27

Bind Variables

| | ST
el |
o/Ss '

Bind variable

1-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Bind Variables
A bind variableis avariable that you declare in a host environment. Bind variables can be used to
pass
run-time values, either number or character, into or out of one or more PL/SQL programs. The
PL/SQL programs use bind variables as they would use any other variable. Y ou can reference
variables declared in the host or calling environment in PL/SQL statements, unless the statement is
in a procedure, function, or package. This includes host language variables declared in precompiler
programs, screen fieldsin Oracle Devel oper Forms applications, and i SQL* Plus bind variables.

Creating Bind Variables

To declare abind variable in the i SQL* Plus environment, use the command VARI ABLE. For
example, you declare a variable of type NUMBER and VARCHAR?Z as follows:

VARI ABLE ret urn_code NUMBER
VARI ABLE return_msg VARCHAR2(30)

Both SQL and iSQL*Plus can reference the bind variable, and iSQL* Plus can display its value
through the iSQL*Plus PRI NT command.

Oracle9i: PL/SQL Fundamentals 1-28

Displaying Bind Variables

To display the current value of bind variablesin the iSQL* Plus environment, use the PRI NT
command. However, PRI NT cannot be used inside a PL/SQL block becauseit isan iSQL*Plus
command. The following exampleillustrates a PRI NT command:

VARI ABLE g_n NUMBER

PRINT g _n

Y ou can reference host variablesin PL/SQL programs. These variables should be preceded by a
colon.

VARI ABLE RESULT NUMBER

An example of using a host variable in a PL/SQL block:

BEG N
SELECT (SALARY*12) + NVL(COWM SSI ON_PCT, 0) | NTO : RESULT
FROM enpl oyees WHERE enpl oyee_id = 144;

END,
/
PRI NT RESULT

Oracle9i: PL/SQL Fundamentals 1-29

Using Bind Variables

To reference a bind variable in PL/SQL, you must
prefix its name with a colon (3).

Example:
VARI ABLE g_sal ary NUMBER
BEG N
SELECT sal ary
I NTO :g_salary
FROM enpl oyees
WHERE enpl oyee_id = 178;
END;
/
PRI NT g_sal ary

1-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Printing Bind Variables
In iSQL*Plus you can display the value of the bind variable using the PRI NT command.

| G_SALARY

| 7000

Oracle9i: PL/SQL Fundamentals 1-30

Referencing Non-PL/SQL Variables

Store the annual salary into a iISQL*Plus host
variable.

cg_nmonthly sal :=v_sal / 12;

* Reference non-PL/SQL variables as host
variables.

* Prefix the references with a colon ().

1-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing Non-PL/SQL Variables

To reference host variables, you must prefix the references with acolon (:) to distinguish them from
declared PL/SQL variables.

Example

This example computes the monthly salary, based upon the annua salary supplied by the user. This
script contains both i SQL* Plus commands as well as a complete PL/SQL block.

VARI ABLE g _nonthly sal NUMBER
DEFI NE p_annual sal = 50000

SET VERI FY OFF

DECLARE

v_sal NUMBER(9, 2) := &p_annual _sal;
BEG N

g_nmonthly sal := v_sal/12;
END;

/
PRI NT g nonthly_ sal

The DEFI NE command specifies a user variable and assigns it a CHAR value. Even though you enter
the number 50000, iSQL*Plus assignsa CHAR valueto p_annual _sal consisting of the characters,
5,0,0,0 and 0.

Oracle9i: PL/SQL Fundamentals 1-31

DBVS_OUTPUT. PUT LI NE

®* An Oracle-supplied packaged procedure
* An alternative for displaying data from a PL/SQL block

®* Must be enabled in iISQL*Plus with
SET SERVEROUTPUT ON

SET SERVEROUTPUT ON
DEFI NE p_annual _sal = 60000

DECLARE

v_sal NUMBER(9, 2) := &p_annual _sal;
BEG N

v_sal := v_sal/12,

DBVS_QUTPUT. PUT_LINE (' The nonthly salary is ' ||
TO CHAR(v_sal));
END;
/

1-32 Copyright © Oracle Corporation, 2001. All rights reserved.

DBNMS_OUTPUT. PUT_LI NE

Y ou have seen that you can declare a host variable, referenceit in a PL/SQL block, and then display
its contents in iSQL* Plus using the PRI NT command. Another option for displaying information
fromaPL/SQL block isDBM5_OUTPUT. PUT_LI NE. DBMS_OUTPUT is an Oracle-supplied
package, and PUT_LI NE is a procedure within that package.

Within a PL/SQL block, reference DBMS _OUTPUT. PUT_LI NE and, in parentheses, specify the
string that you want to print to the screen. The package must first be enabled in your iSQL*Plus
session. To do this, executethe iSQL*Plus SET SERVEROUTPUT ON command.

The exampl e on the dlide computes the monthly salary and printsit to the screen, using
DBVS_OUTPUT. PUT_LI NE. The output is shown below:

The monthly salatry 12 5000
PLIEQL procedure successfully completed.

Oracle9i: PL/SQL Fundamentals 1-32

Summary

In this lesson you should have learned the following:

® PL/SQL blocks are composed of the following
sections:

— Declarative (optional)
— Executable (required)
— Exception handling (optional) RE
* A PL/SQL block can be an anonymous E
block, procedure, or function. BEG N

I

EXCEPTI ON
END; i

1-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A PL/SQL block is abasic, unnamed unit of a PL/SQL program. It consists of a set of SQL or
PL/SQL statements and it performs asingle logical function. The declarative part isthefirst part of a
PL/SQL block and is used for declaring objects such as variables, constants, cursors, and definitions
of error situations called exceptions. The executable part isthe mandatory part of a PL/SQL block,
and contains SQL and PL/SQL statements for querying and manipulating data. The exception-
handling part is embedded inside the executable part of ablock and is placed at the end of the
executabl e part.

An anonymous PL/SQL block is the basic, unnamed unit of a PL/SQL program. Procedures and
functions can be compiled separately and stored permanently in an Oracle database, ready to be
executed.

Oracle9i: PL/SQL Fundamentals 1-33

Summary

In this lesson you should have learned the following:
e PL/SQL identifiers:

— Are defined in the declarative section
— Can be of scalar, composite, reference, or LOB data
type

— Can be based on the structure of another variable
or database object

— Can beinitialized

* Variables declared in an external environment
such as iISQL*Plus are called host variables.

e Use DBMS_QUTPUT. PUT_LI NEto display data from
a PL/SQL block.

1-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

All PL/SQL datatypes are scalar, composite, reference, or LOB type. Scalar data types do not have
any components within them, whereas composite data types have other data types within them.
PL/SQL variables are declared and initialized in the declarative section.

When a PL/SQL program is written and executed using iSQL* Plus, i SQL* Plus becomes the host
environment for the PL/SQL program. The variables declared iniSQL* Plus are called host
variables. Then the PL/SQL program is written and executed using, for example, Oracle Forms.
Forms becomes a host environment, and variables declared in Oracle Forms are called host
variables. Host variables are also called bind variables.

To display information from a PL/SQL block use DBM5_OUTPUT. PUT_LI NE. DBM5S_OUTPUT is
an Oracle-supplied package, and PUT_LI NE is a procedure within that package. Within a PL/SQL
block, reference DBMS_OUTPUT. PUT_LI NE and, in parentheses, specify the string that you want
to print to the screen.

Oracle9i: PL/SQL Fundamentals 1-34

Practice 1 Overview

This practice covers the following topics:
* Determining validity of declarations

®* Declaring a simple PL/SQL block

* Executing a simple PL/SQL block

1-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 1 Overview

This practice reinforces the basics of PL/SQL covered in this lesson, including data types,
definitions of identifiers, and validation of expressions. Y ou put all these elementstogether to create
asimple PL/SQL block.

Paper-Based Questions
Questions 1 and 2 are paper-based questions.

Oracle9i: PL/SQL Fundamentals 1-35

Practice 1
1. Evaluate each of the following declarations. Determine which of them are not legal and explain

why.
a DECLARE

v_id NUVBER(4) ;
b. DECLARE

V_ X, V.Y, V_Z VARCHAR2(10) ;
C. DECLARE

v_birthdate DATE NOT NULL;
d. DECLARE

v_in_stock BOOLEAN : = 1;

Oracle9i: PL/SQL Fundamentals 1-36

Practice 1 (continued)

2. In each of the following assignments, indicate whether the statement is valid and what the
valid datatype of the result will be.

a v_days_to_go := v_due_date - SYSDATE;

b. v_sender := USER || ’: ' || TO_CHAR(v_dept_no);

c. v_sum : = $100, 000 + $250, 000;

d v_flag : = TRUE

ev.nl:=vn2>(2* v_n3);

f. v_value := NULL;

3. Create an anonymous block to output the phrase “My PL/SQL Block Works’ to the screen.

| G_MESSAGE

Iy PL/SEL Block YWorks

Oracle9i: PL/SQL Fundamentals 1-37

Practice 1 (continued)
If you have time, complete the following exercise:

4. Create ablock that declares two variables. Assign the value of these PL/SQL variablesto
iSQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block in afilenamed p1g4. sql , by clicking the
Save Scri pt button. Remember to save the script witha. sqgl extension.

V_CHAR Character (variable Iength)
V_NUM Nunber

Assign valuesto these variables as follows:

Vari abl e Val ue

V. CHAR The literal "42 is the answer’
V_NUM The first two characters from V_CHAR

| G_CHAR

|42 is the answer

| G_NUM
| 42

Oracle9i: PL/SQL Fundamentals 1-38

Writing Executable Statements

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Describe the significance of the executable
section

* Use identifiers correctly

* Write statements in the executable section
®* Describe the rules of nested blocks

* Execute and test a PL/SQL block

®* Use coding conventions

2-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn how to write executable code in the PL/SQL block. Y ou also learn the rules
for nesting PL/SQL blocks of code, as well as how to execute and test PL/SQL code.

Oracle9i: PL/SQL Fundamentals 2-2

PL/SQL Block Syntax and Guidelines

® Statements can continue over several lines.
* Lexical units can be classified as:

— Delimiters

— Identifiers

— Literals

— Comments

2-3 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Block Syntax and Guidelines

Because PL/SQL isan extension of SQL, the general syntax rules that apply to SQL also apply to
the PL/SQL language.

* Alineof PL/SQL text contains groups of characters known as lexical units, which can be
classified asfollows:

- Delimiters (simple and compound symbols)
- [dentifiers, which include reserved words
- Literals

- Comments

« Toimprove readability, you can separate lexical units by spaces. In fact, you must separate
adjacent identifiers by a space or punctuation.

» You cannot embed spacesin lexical units except for string literals and comments.
» Statements can be split acrosslines, but keywords must not be split.

Oracle9i: PL/SQL Fundamentals 2-3

PL/SQL Block Syntax and Guidelines (continued)
Delimiters
Delimiters are simple or compound symbols that have special meaning to PL/SQL.
Simple Symbols

Symbol M eaning
+ Addition operator
- Subtraction/negation operator

M ultiplication operator

/ Division operator

= Relational operator

@ Remote access indicator

; Statement terminator

Compound Symbols

Symbol M eaning
<> Relational operator

= Relational operator

| Concatenation operator

-- Single line comment indicator

1> Beginning comment delimiter

*l Ending comment delimiter

L= Assignment operator

Note: Reserved words cannot be used as identifiers unless they are enclosed in double quotation marks
(for example, "SELECT™).

Oracle9i: PL/SQL Fundamentals 2-4

2-5

Identifiers

® Can contain up to 30 characters
®* Must begin with an alphabetic character

e Can contain numerals, dollar signs, underscores,
and number signs

® Cannot contain characters such as hyphens,
slashes, and spaces

* Should not have the same name as a database
table column name

* Should not be reserved words

Copyright © Oracle Corporation, 2001. All rights reserved.

Identifiers

Identifiers are used to name PL/SQL program items and units, which include constants, variables,
exceptions, cursors, cursor variables, subprograms, and packages.

Identifiers can contain up to 30 characters, but they must start with an a phabetic character.

Do not choose the same name for the identifier as the name of columnsin atable used in the
block. If PL/SQL identifiers arein the same SQL statements and have the same name asa
column, then Oracle assumesthat it is the column that is being referenced.

Reserved words should be written in uppercase to promote readability.

Anidentifier consists of aletter, optionaly followed by more letters, numeras, dollar signs,
underscores, and number signs. Other characters such as hyphens, slashes, and spaces are
illegal, asthe following examples show:

dot s&dashes -- illegal anpersand
debit-anount -- illegal hyphen
on/ of f -- illegal slash
user id -- illegal space

noney$$$t r ee, SNH##, t ry_agai n_ are examples that show that adjoining and trailing dollar
signs, underscores, and number signs are allowed.

Oracle9i: PL/SQL Fundamentals 2-5

PL/SQL Block Syntax and Guidelines

* Literals

— Character and date literals must be enclosed in
single quotation marks.

|v_name := 'Henderson’; |

— Numbers can be simple values or scientific
notation.

® Aslash (/)runs the PL/SQL block in a script file
or in some tools such as iISQL*PLUS.

2-6 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Block Syntax and Guidelines
A literal is an explicit numeric, character, string, or Boolean value that is not represented by an
identifier.
e Character literasinclude all the printable charactersin the PL/SQL character set: letters,
numerals, spaces, and special symbols.

» Numeric literals can be represented either by a simple value (for example, —=32.5) or by a
scientific notation (for example, 2E5, meaning2* (10 to the power of 5) =
200000).

A PL/SQL program isterminated and executed by adlash (/) on aline by itself.

Oracle9i: PL/SQL Fundamentals 2-6

Commenting Code

® Prefix single-line comments with two dashes (- -).

* Place multiple-line comments between the symbols
[* and */ .

Example:

DECLARE

v_sal NUMBER (9, 2);
BEG N
/* Conpute the annual salary based on the
nonthly salary input fromthe user */

v_sal :=:g nonthly sal * 12
END; -- This is the end of the bl ock
2-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Commenting Code

Comment code to document each phase and to assist debugging. Comment the PL/SQL code with
two dashes (- -) if the comment ison asingle line, or enclose the comment between the symbols/ *
and */ if the comment spans severa lines. Comments are strictly informational and do not enforce
any conditions or behavior on behavioral logic or data. Well-placed comments are extremely
valuable for code readability and future code maintenance.

Example

In the example on the dide, the line enclosed within /* and */ isthe comment that explains the
code that followsiit.

Oracle9i: PL/SQL Fundamentals 2-7

SQL Functions in PL/SQL

* Available in procedural statements:
— Single-row number
— Single-row character
— Data type conversion
— Date
— Timestamp
— CREATEST and LEAST
— Miscellaneous functions

Same as in SQL

* Not available in procedural statements:
— DECODE
— Group functions

2-8 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Functions in PL/SQL

Most of the functions availablein SQL are also valid in PL/SQL expressions:
e Single-row number functions
e Single-row character functions
» Datatype conversion functions
» Datefunctions
» Timestamp functions
» GREATEST, LEAST
* Miscellaneous functions

The following functions are not available in procedural statements:
» DECODE.

* Group functions: AVG, M N, MAX, COUNT, SUM STDDEV, and VARI ANCE. Group functions
apply to groups of rows in atable and therefore are available only in SQL statementsin a
PL/SQL block.

Oracle9i: PL/SQL Fundamentals 2-8

SQL Functions in PL/SQL: Examples

* Build the mailing list for a company.

v_mailing _address := v_nane|| CHR(10)]| |
v_address| | CHR(10) || v_state||
CHR(10) | | v_zi p;

®* Convert the employee name to lowercase.

V_enane .= LONER(V_enane);

2-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Functions in PL/SQL: Examples

Most of the SQL functions can be used in PL/SQL. These built-in functions help you to manipulate
data; they fall into the following categories:

* Number
» Character
» Conversion
e Date
* Miscellaneous
The function examplesin the dide are defined as follows:
 Build the mailing address for a company.
» Convert the name to lowercase.

CHRisthe SQL function that converts an ASCII code to its corresponding character; 10 isthe code
for aline feed.

PL/SQL hasits own error handling functions which are:
+ SQLCCDE
* SQ.ERRM(These error handling functions are discussed later in this course)

Oracle9i: PL/SQL Fundamentals 2-9

Data Type Conversion

* Convert data to comparable data types.

* Mixed data types can result in an error and affect
performance.

®* Conversion functions:
— TO CHAR
— TO DATE
— TO_NUMBER

DECLARE
v_date DATE := TO DATE(’ 12- JAN-2001’, ' DD- MON- YYYY');
BEG N

2-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Type Conversion

PL/SQL attempts to convert datatypes dynamicaly if they are mixed in a statement. For example, if
you assign a NUVMBER value to a CHAR variable, then PL/SQL dynamically trand ates the number
into a character representation, so that it can be stored in the CHAR variable. The reverse situation
also applies, provided that the character expression represents a numeric value.

If they are compatible, you can also assign charactersto DATE variables and vice versa.

Within an expression, you should make sure that data types are the same. If mixed data types occur
in an expression, you should use the appropriate conversion function to convert the data.

Syntax
TO CHAR (val ue, fnt)
TO DATE (val ue, fnt)
TO NUMBER (val ue, fnt)
where: value is acharacter string, number, or date.
fmt isthe format model used to convert avalue.

Oracle9i: PL/SQL Fundamentals 2-10

Data Type Conversion

This statement produces a compilation error if the
variable v_dat e is declared as a DATE data type.

v_date := ’January 13, 2001’ ;

2-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Type Conversion (continued)
The conversion example in the dideis defined as follows:

Store a character string representing a date in avariable that is declared as a DATE datatype. This
code causes a syntax error.

Oracle9i: PL/SQL Fundamentals 2-11

Data Type Conversion

To correct the error, use the TO DATE conversion
function.

v_date := TO DATE ('’ January 13, 2001,
"Month DD, YYYY');

2-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Type Conversion (continued)
The conversion example in the dide to correct error from the previous dide is defined as follows:

To correct the error in the previous dlide, convert the string to a date with the TO_DATE conversion
function.

PL/SQL attempts conversion if possible, but its success depends on the operations that are being
performed. It is good programming practice to explicitly perform data type conversions, because
they can favorably affect performance and remain valid even with a change in software versions.

Oracle9i: PL/SQL Fundamentals 2-12

Nested Blocks
and Variable Scope

® PL/SQL blocks can be nested wherever an
executable statement is allowed.

®* A nested block becomes a statement.
®* An exception section can contain nested blocks.

®* The scope of an identifier is that region of a
program unit (block, subprogram, or package)
from which you can reference the identifier.

2-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Blocks

One of the advantages that PL/SQL has over SQL isthe ability to nest statements. Y ou can nest
blocks wherever an executable statement is allowed, thus making the nested block a statement.
Therefore, you can break down the executable part of a block into smaller blocks. The exception
section can also contain nested blocks.

Variable Scope

References to an identifier are resolved according to its scope and visibility. The scope of an
identifier isthat region of a program unit (block, subprogram, or package) from which you can
reference the identifier. Anidentifier isvisible only in the regions from which you can reference the
identifier using an unqualified name. Identifiers declared in a PL/SQL block are considered local to
that block and global to al its subblocks. If aglobal identifier is redeclared in a subblock, both
identifiers remain in scope. Within the subblock, however, only the local identifier is visible because
you must use a quaified name to reference the global identifier.

Although you cannot declare an identifier twice in the same block, you can declare the same
identifier in two different blocks. The two items represented by the identifier are distinct, and any
change in one does not affect the other. However, ablock cannot reference identifiers declared in
other blocks at the same level because those identifiers are neither local nor globa to the block.

Oracle9i: PL/SQL Fundamentals 2-13

Nested Blocks and Variable Scope

Example:

X Bl NARY_I NTEGER;
BEG N

o Scope of x
DECLARE

y NUMBER;
BEG N

Scope of y

2-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Blocks and Variable Scope

In the nested block shown on the dide, the variable named y can reference the variable named x.
Variable x, however, cannot reference variable y outside the scope of y. If variable y in the nested
block is given the same name as variable x in the outer block, its valueisvalid only for the duration
of the nested block.

Scope

The scope of an identifier isthat region of a program unit (block, subprogram, or package) from
which you can reference the identifier.

Visibility
An identifier isvisible only in the regions from which you can reference the identifier using an
unqualified name.

Oracle9i: PL/SQL Fundamentals 2-14

Identifier Scope

An identifier is visible in the regions where you can
reference the identifier without having to qualify it:

* A block can look up to the enclosing block.
* A block cannot look down to enclosed blocks.

2-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Identifier Scope

Anidentifier isvisiblein the block in which it is declared and in al nested subblocks, procedures,
and functions. If the block does not find the identifier declared locally, it looks up to the declarative
section of the enclosing (or parent) blocks. The block never looks down to enclosed (or child) blocks
or sidewaysto sibling blocks.

Scope appliesto dl declared objects, including variables, cursors, user-defined exceptions, and
constants.

Oracle9i: PL/SQL Fundamentals 2-15

Qualify an Identifier

* The qualifier can be the label of an enclosing
block.

* (Qualify an identifier by using the block label prefix.

<<out er >>
DECLARE
bi rt hdat e DATE;

BEG N

DECLARE
bi rt hdat e DATE;
BEG N
outer.birthdate : =
TO _DATE(’ 03- AUG 1976’ ,
' DD- MON- YYYY') ;
END;
END;
2-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Qualify an Identifier

Qualify anidentifier by using the block label prefix. In the example on the dide, the outer block is
labeled out er . Intheinner block, avariable with the same name, bi r t hdat e, asthevariablein
the outer block is declared. To reference the variable, bi r t hdat e, from the outer block in the
inner block, prefix the variable by the block name, out er . bi rt hdat e.

For more information on block label's, see PL/SQL User’s Guide and Reference, “ Fundamentals.”

Oracle9i: PL/SQL Fundamentals 2-16

Determining Variable Scope
Class Exercise

<<out er >>
DECLARE
v_sal NUMBER(7, 2) : = 60000;
v_comm NUMBER(7,2) := v_sal * 0.20;
v_nmessage VARCHAR2(255) := "' eligible for comm ssion’;
BEGA N
DECLARE
v_sal NUMBER(7, 2) : = 50000;
v_comm NUMBER(7,2) := 0;
v_total _conp NUMBER(7,2) := v_sal + v_comm
BEG N
v_nessage := 'CLERK not’||v_nessage;
outer.v_conmm:= v_sal * 0.30;
D+—
END;
@ v_nessage := ' SALESMAN || v_nessage;
—_
END;
2-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Class Exercise

Evaluate the PL/SQL block on the dlide. Determine each of the following values according to the
rules of scoping:

1. Thevaueof V_MESSAGE at position 1.

2. Thevaueof V_TOTAL_COWP at position 2.
3. Thevaue of V_COMMat position 1.

4. Thevalueof out er .V_COVMat position 1.
5. Thevaue of V_COMMat position 2.

6. Thevaue of V_MESSACE at position 2.

Oracle9i: PL/SQL Fundamentals 2-17

Operators in PL/SQL

®* Logical
* Arithmetic
* Concatenation Same as in SQL

* Parentheses to control order
of operations

* Exponential operator (**)

2-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Order of Operations

The operations within an expression are performed in aparticular order depending on their
precedence (priority). The following table shows the default order of operations from high priority to
low priority:

Operator Operation

o Exponentiation

+ - Identity, negation

* o Multiplication, division

+, -, || Addition, subtraction, concatenation
= <, >, <5 >, <>, =) ~= A= | Comparison

'S NULL, LIKE, BETWEEN, IN

NOT Logical negation

AND Conjunction

OR Inclusion

Note: It is hot necessary to use parentheses with Boolean expressions, but it does make the text
easier to read.

Oracle9i: PL/SQL Fundamentals 2-18

Operators in PL/SQL

Examples:
®* Increment the counter for aloop.

v_count .= v_count + 1;

®* Setthe value of a Boolean flag.

v_equal = (v_nl =v_n2);

* Validate whether an employee number contains a
value.

v_valid = (v_enpno IS NOT NULL);

2-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Operators in PL/SQL

When working with nulls, you can avoid some common mistakes by keeping in mind the following
rules:

» Comparisonsinvolving nulls always yield NULL.
« Applying the logical operator NOT to anull yields NULL.

 In conditional control statements, if the condition yields NULL, its associated sequence
of statementsis not executed.

Oracle9i: PL/SQL Fundamentals 2-19

Programming Guidelines

Make code maintenance easier by:
* Documenting code with comments
* Developing a case convention for the code

®* Developing naming conventions for identifiers and
other objects

* Enhancing readability by indenting

2-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Programming Guidelines

Follow programming guidelines shown on the slide to produce clear code and reduce maintenance
when developing a PL/SQL block.

Code Conventions

The following table provides guidelines for writing code in uppercase or lowercase to help you
distinguish keywords from named objects.

Category Case Convention Examples

SQL statements Uppercase SELECT, | NSERT

PL/SQL keywords Uppercase DECLARE, BEG N, | F

Datatypes Uppercase VARCHARZ2, BOOLEAN

Identifiers and parameters Lowercase v_sal ,enp_cursor,g_sal,
p_enpno

Database tables and columns Lowercase enpl oyees, enpl oyee_i d,
department _id

Oracle9i: PL/SQL Fundamentals 2-20

Indenting Code

For clarity, indent each level of code.

Example:
DECLARE
v_dept no NUVBER(4) ;
BEG N v_location_id NUVBER(4);
| F x=0 THEN BEG N
y: =1, SELECT departnent _id,
END | F; | ocation_id
END, | NTO v_dept no,
v_|location_id
FROM departnents
WHERE depart nment _nane
= ' Sal es’;
END;
/
2-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Indenting Code

For clarity, and to enhance readability, indent each level of code. To show structure, you can divide
lines using carriage returns and indent lines using spaces or tabs. Compare the following | F
statements for readability:

I F x>y THEN v_max: =x; ELSE v_rmax: =y; END | F;

IF x >y THEN
vV_max = X;
ELSE
V_max = y;
END | F;

Oracle9i: PL/SQL Fundamentals 2-21

Summary

In this lesson you should have learned the following:
®* PL/SQL block syntax and guidelines
* How to use identifiers correctly

®* PL/SQL block structure: nesting blocks and
scoping rules

* PL/SQL programming: ECLARE
Functions

- . BEG N
— Datatype conversions

— Operators EXCEPTI ON
— Conventions and guidelines

END;

2-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Because PL/SQL isan extension of SQL, the general syntax rules that apply to SQL also apply to
the PL/SQL language.

Identifiers are used to name PL/SQL program items and units, which include constants, variables,
exceptions, cursors, cursor variables, subprograms, and packages.

A block can have any number of nested blocks defined within its executable part. Blocks defined
within ablock are called subblocks. Y ou can nest blocks only in the executable part of ablock.

Most of the functions available in SQL are also valid in PL/SQL expressions. Conversion functions
convert avalue from one data type to another. Generally, the form of the function follows the data
type TOdata type convention. Thefirst datatype isthe input datatype. The second datatypeisthe
output data type.

Comparison operators compare one expression to another. The result is always TRUE, FALSE, or
NULL. Typically, you use comparison operators in conditional control statements and in the WHERE
clause of SQL data manipulation statements. The relational operators allow you to compare
arbitrarily complex expressions.

Variables declared in iISQL* Plus are called bind variables. To reference these variablesin PL/SQL
programs, they should be preceded by a colon.

Oracle9i: PL/SQL Fundamentals 2-22

Practice 2 Overview

This practice covers the following topics:
®* Reviewing scoping and nesting rules
* Developing and testing PL/SQL blocks

2-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 2 Overview

This practice reinforces the basics of PL/SQL that were presented in the lesson. The practices use
sample PL/SQL blocks and test the understanding of the rules of scoping. Students also write and
test PL/SQL blocks.

Paper-Based Questions
Questions 1 and 2 are paper-based questions.

Oracle9i: PL/SQL Fundamentals 2-23

Practice 2

PL/SQL Block
DECLARE
v_wei ght NUMBER(3) : = 600;
V_nmessage VARCHAR2(255) := ' Product 10012’ ;
BEG N
DECLARE
v_wei ght NUVBER(3) := 1;
vV_nessage VARCHAR2(255) := 'Product 11001’;
v_new_| ocn VARCHAR2(50) := 'Europe’;
BEG N
v_weight := v_weight + 1;
@ v_new locn := "Western ' || v_new._|ocn;
END;
v_weight := v_weight + 1;
v_nmessage := v_nessage || ' is in stock’;
v_new locn := "Western ' || v_new_|ocn;
END;

1. Evaluate the PL/SQL block above and determine the data type and value of each of the
following variables according to the rules of scoping.

a. Thevaueof V_WEI GHT at position 1is:

b. Thevaueof V_NEW LOCNat position 1is:

c. Thevaueof V_WEI GHT at position 2 is:

d. Thevaueof V_MESSAGE at position 2is.

e. Thevaueof V_NEW LOCN at position 2 is:

Oracle9i: PL/SQL Fundamentals 2-24

Practice 2 (continued)
Scope Example

DECLARE
V_cust omer VARCHAR2(50) := 'Wbnansport’;
v_credit _rating VARCHAR2(50) := " EXCELLENT ;
BEGA N
DECLARE

vV_cust omer NUMBER(7) := 201;

V_name VARCHAR2(25) := 'Unisports’;
BEGN.________ _______ aemTTTTTTITIT A -
o v_cust onmer T L _/_na[ng:> . v credit _rati ng,)

END] . Izl

‘:\\(_cust ome:r’:) v nam':::) o v_credit _rati n§g:)

e, T T]
/

2. Suppose you embed a subblock within a block, as shown above. Y ou declare two variables,
V_CUSTOMER and V_CREDI T_RATI NG, in the main block. Y ou aso declare two variables,
V_CUSTOVER and V_NAME, in the subblock. Determine the values and data types for each of
the following cases.

a. Thevaueof V_CUSTOVERn the subblock is:

b. Thevaue of V_NAME inthe subblock is:

c. Thevalueof V_CREDI T_RATI NGin the subblock is:

d. Thevaueof V_CUSTOVERinthe main block is:

e. Thevaueof V_NAME inthe main block is:

f. Thevalueof V_CREDI T_RATI NGinthemainblock is:

Oracle9i: PL/SQL Fundamentals 2-25

Practice 2 (continued)

3. Create and execute a PL/SQL block that accepts two numbers through iSQL* Plus
substitution
variables.

a. Use the DEFI NE command to provide the two values.
DEFINE p_nunl = 2
DEFINE p_nun2 = 4

b. Pass the two values defined in step a above, to the PL/SQL block through iSQL* Plus
substitution variables. The first number should be divided by the second number and have the
second number added to the result. The result should be stored in a PL/SQL variable and
printed on the screen.

Note: SET VERI FY OFF inthe PL/SQL block.

4.5
PLIZQL procedure successfully completed.

4. BuildaPL/SQL block that computes the total compensation for one year.

a. The annual salary and the annual bonus percentage values are defined using the DEFI NE
command.

b. Pass the values defined in the above step to the PL/SQL block through i SQL* Plus
substitution variables. The bonus must be converted from awhole number to a decimal (for
example, 15t0.15). If thesalary isnul | , set it to zero before computing the total
compensation. Execute the PL/SQL block. Reminder: Use the NVL function to handle nul |
values.

Note: Total compensation isthe sum of the annua salary and the annual bonus.
To test the NVL function, set the DEFI NE variable equal to NULL.
DEFI NE p_sal ary = 50000
DEFI NE p_bonus = 10

PLASQL procedure successfully completed.

| G_TOTAL
| 55000

Oracle9i: PL/SQL Fundamentals 2-26

Interacting with
the Oracle Server

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Write a successful SELECT statement in PL/SQL
* Write DML statements in PL/SQL

® Control transactions in PL/SQL

®* Determine the outcome of SQL data manipulation
language (DML) statements

3-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn to embed standard SQL SELECT, | NSERT, UPDATE, and DELETE
statements in PL/SQL blocks. Y ou also learn to control transactions and determine the outcome of
SQL data manipulation language (DML) statementsin PL/SQL.

Oracle9i: PL/SQL Fundamentals 3-2

SQL Statements in PL/SQL

* Extract arow of data from the database by using
the SELECT command.

* Make changes to rows in the database by using
DML commands.

®* Control atransaction with the COVM T, ROLLBACK,
or SAVEPO NT command.

®* Determine DML outcome with implicit cursor
attributes.

3-3 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements in PL/SQL

When you extract information from or apply changes to the database, you must use SQL. PL/SQL
supports data manipulation language and transaction control commands of SQL. Y ou can use
SELECT statements to populate variables with values queried from arow in atable. Y ou can use
DML commands to modify the datain a database table. However, remember the following points

about PL/SQL blocks while using DML statements and transaction control commandsin PL/SQL
blocks:

» Thekeyword END signals the end of a PL/SQL block, not the end of atransaction. Just asa
block can span multiple transactions, atransaction can span multiple blocks.

e PL/SQL does not directly support data definition language (DDL) statements, such as
CREATE TABLE, ALTER TABLE, or DROP TABLE.

* PL/SQL does not support data control language (DCL) statements, such as GRANT or
REVOKE.

Oracle9i: PL/SQL Fundamentals 3-3

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT
statement.

Syntax:

SELECT select |ist

I NTO {variabl e_nanme[, variable nane]...
| record_nane}

FROM tabl e

[WHERE condition];

3-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data Using PL/SQL
Use the SELECT statement to retrieve data from the database. In the syntax:

select_list isalist of at least one column and can include SQL expressions, row
functions, or group functions.

variable name isthe scalar variable that holds the retrieved value.
record name isthe PL/SQL RECORD that holdsthe retrieved values.
table specifies the database table name.

condition is composed of column names, expressions, constants, and comparison operators,
including PL/SQL variables and constants.

Guidelines for Retrieving Data in PL/SQL
e Terminate each SQL statement with a semicolon (;).
e Thel NTOclauseisrequired for the SELECT statement when it is embedded in PL/SQL.

* The WHERE clause is optiona and can be used to specify input variables, constants, literals, or
PL/SQL expressions.

Oracle9i: PL/SQL Fundamentals 3-4

Retrieving Data Using PL/SQL (continued)

» Specify the same number of variablesin the | NTOclause as database columns in the SELECT
clause. Be sure that they correspond positionally and that their data types are compatible.

» Use group functions, such as SUM in a SQL statement, because group functions apply to
groups of rowsin atable.

Oracle9i: PL/SQL Fundamentals 3-5

SELECT Statements in PL/SQL

® The |l NTOclause is required.
® Queries must return one and only one row.

Example:
DECLARE
v_dept no NUVBER(4) ;
v_|location_id NUVBER(4) ;
BEG N
SELECT departnent _id, location_id
| NTO v_deptno, v_location_id
FROM departnents
VWHERE departnent _nane = ' Sal es’;
END;
/
3-6 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT Statements in PL/SQL
| NTOClause

The | NTOclause is mandatory and occurs between the SELECT and FROMclauses. It is used to
specify the names of variables that hold the values that SQL returns from the SELECT clause. You
must specify one variable for each item selected, and the order of the variables must correspond with
the items selected.

Use the | NTOclause to populate either PL/SQL variables or host variables.
QueriesMust Return One and Only One Row

SELECT statements within a PL/SQL block fall into the ANSI classification of embedded SQL, for
which the following rule applies: queries must return one and only onerow. A query that returns
more than one row or no row generates an error.

PL/SQL manages these errors by raising standard exceptions, which you can trap in the exception
section of the block with the NO_DATA FOUND and TOO _MANY _ROWS exceptions (exception
handling is covered in a subsequent lesson). Code SELECT statementsto return asingle row.

Oracle9i: PL/SQL Fundamentals 3-6

Retrieving Data in PL/SQL

Retrieve the hire date and the salary for the specified

employee.
Example:
DECLARE
v_hire _date enpl oyees. hi re_dat e% YPE;
v_sal ary enpl oyees. sal ar y%d'YPE;
BEG N
SELECT hire_date, salary
| NTO v_hire_date, v_salary

FROM enpl oyees

VWHERE enpl oyee _id = 100;
END;
/

3-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data in PL/SQL
In the example on the dide, the variablesv_hi re_dat e andv_sal ary aredeclared in the
DECL ARE section of the PL/SQL block. In the executable section, the values of the columns
HI RE_DATE and SALARY for the employee with the EMPLOYEE_| D 100 isretrieved from the
EMPLOYEES tableand stored inthev_hi re_dat e andv_sal ary variables, respectively.
Observe how the | NTO clause, along with the SELECT statement, retrieves the database column

valuesinto the PL/SQL variables.

Oracle9i: PL/SQL Fundamentals 3-7

Retrieving Data in PL/SQL

Return the sum of the salaries for all employees in

the specified department.
Example:

SET SERVEROUTPUT ON
DECLARE
v_sum sal NUMBER(10, 2) ;
v_dept no NUVBER NOT NULL : = 60;

BEG N
SELECT SUM sal ary) -- group function
| NTO
FROM enpl oyees
WHERE departnent _id = v_deptno;

DBVS_QUTPUT. PUT_LINE (' The sumsalary is '’
TO CHAR(v_sum sal));
END;
/

3-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data in PL/SQL

In the example onthe dide, thev_sum sal andv_dept no variables are declared in the

DECL ARE section of the PL/SQL block. In the executable section, the total salary for the department
with the DEPARTMENT _I D 60 is computed using the SQL aggregate function SUM and assigned to
thev_sum sal variable. Note that group functions cannot be used in PL/SQL syntax. They are

used in SQL statements within a PL/SQL block.
The output of the PL/SQL block in the dide is shown below:

The sum salaty 15 285800
PLIZOL procedure successfully completed.

Oracle9i: PL/SQL Fundamentals 3-8

Naming Conventions

DECLARE
hire_date enpl oyees. hi re_dat e%d YPE;
sysdat e hi r e_dat e%d YPE;
enpl oyee_id enpl oyees. enpl oyee_i dWYPE : = 176;
BEG N
SELECT hire_date, sysdate
| NTO hire_date, sysdate
FROM enpl oyees
VWHERE enpl oyee_id = enpl oyee_i d;
END;
/
DECLARE
EEE.CRE at line 1

OFA-01422; exact fetch returns more than requested number of rows
OFA-06512: atline &

39 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Conventions

In potentially ambiguous SQL statements, the names of database columns take precedence over the
names of local variables. The example shown on the dide is defined asfollows: Retrieve the hire
date and today’ s date from the EMPLOYEES table for employee ID 176. This example raises an
unhandled run-time exception because in the WHERE clause, the PL/SQL variable names are the
same as that of the database column names in the EMPLOYEES table.

The following DELETE statement removes all employees from the EMPLOYEES table where last
nameis not null, not just 'King', because the Oracle server assumes that both LAST _NANMES in the
VWHERE clause refer to the database column:

DECLARE
| ast _name VARCHAR2(25) := 'King’;
BEG N
DELETE FROM enpl oyees WHERE | ast _nane = | ast _nane;

Oracle9i: PL/SQL Fundamentals 3-9

Manipulating Data Using PL/SQL

Make changes to database tables by using DML

commands:
e | NSERT
e UPDATE
INSERT
e DELETE
e MERGE
UPDATE
DELETE
3-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Manipulating Data Using PL/SQL

Y ou manipulate datain the database by using the DML commands. Y ou can issue the DML
commands | NSERT, UPDATE, DELETE and MERGE without restriction in PL/SQL. Row locks
(and table locks) are released by including COVM T or ROLLBACK statementsin the PL/SQL code.

* Thel NSERT statement adds new rows of data to the table.
» The UPDATE statement modifies existing rows in the table.
* The DELETE statement removes unwanted rows from the table.

* The MERGE statement selects rows from one table to update or insert into ancther table. The
decision whether to update or insert into the target table is based on a condition in the ON
clause.

Note: MERGE is adeterministic statement. That is, you cannot update the same row of the target
table multiple times in the same MERGE statement. Y ou must have | NSERT and UPDATE object
privilegesin the target table and the SELECT privilege on the source table.

Oracle9i: PL/SQL Fundamentals 3-10

Inserting Data

Add new employee information to the EMPLOYEES
table.

Example:

BEG N
| NSERT | NTO enpl oyees
(enmpl oyee_id, first_nane, |ast_name, email,
hire_date, job_id, salary)
VALUES
(enpl oyees_seq. NEXTVAL, 'Ruth’, ' Cores’, ’'RCORES,
sysdate, ' AD_ASST , 4000);
END;
/

3-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Data

In the example on the dlide, an | NSERT statement is used within a PL/SQL block to insert arecord
into the EMPLOYEES table. While using the | NSERT command in a PL/SQL block, you can:

e Use SQL functions, such as USER and SYSDATE
» Generate primary key values by using database sequences
» Derivevauesinthe PL/SQL block

¢ Add column default values

Note: Thereisno possibility for ambiguity with identifiers and column namesin the | NSERT
statement. Any identifier in the | NSERT clause must be a database column name.

Oracle9i: PL/SQL Fundamentals 3-11

Updating Data

Increase the salary of all employees who are stock

clerks.
Example:
DECLARE
v_sal _increase enpl oyees. sal ary%'YPE : = 800;
BEG N
UPDATE enpl oyees
SET salary = salary + v_sal _increase
WHERE job_id = 'ST_CLERK ;
END;
/
3-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating Data

There may be ambiguity inthe SET clause of the UPDATE statement because athough the identifier
on the left of the assignment operator is always a database column, the identifier on the right can be
either a database column or aPL/SQL variable.

Remember that the WHERE clause is used to determine which rows are affected. If no rows are
modified, no error occurs, unlike the SELECT statement in PL/SQL.

Note: PL/SQL variable assignments dways use : =, and SQL column assignments always use =.
Recdll that if column names and identifier names are identical in the WHERE clause, the Oracle
server looks to the database first for the name.

Oracle9i: PL/SQL Fundamentals 3-12

Deleting Data

Delete rows that belong to department 10 from the
EMPLOYEES table.

Example:
DECLARE
v_dept no enpl oyees. depart nent _i d%'YPE : = 10;
BEG N
DELETE FROM enpl oyees
VWHERE departnment _id = v_deptno;
END;
/
3-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Deleting Data

The DELETE statement removes unwanted rows from atable. Without the use of a WHERE clause,
the entire contents of atable can be removed, provided there are no integrity constraints.

Oracle9i: PL/SQL Fundamentals 3-13

Merging Rows

Insert or update rows in the COPY_EMP table to match
the EMPLOYEES table.

DECLARE
v_enpno enpl oyees. enpl oyee_i d%WYPE : = 100;
BEG N
MERGE | NTO copy_enp ¢
USI NG enpl oyees e
ON (e.enployee id = v_enpno)
WHEN MATCHED THEN
UPDATE SET
c.first_name
c.last_nane
c.email

e.first _nane,
e.l ast _nane,
e.emil,

VWHEN NOT MATCHED THEN
I NSERT VALUES(e. enpl oyee_id, e.first_nane, e.last_nane,
., e.departnent _id);
END,

3-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Merging Rows

The MERGE statement inserts or updates rows in one table, using data from another table. Each row
isinserted or updated in the target table, depending upon an equijoin condition.

The exampl e shown matches the employee id in the COPY_EMP tableto theenpl oyee_i d inthe
EMPLOYEES table. If amatch isfound, the row is updated to match the row in the EMPLOYEES
table. If the row is not found, it isinserted into the COPY_EMP table.

The complete example for using MERGE in a PL/SQL block is shown in the next page.

Oracle9i: PL/SQL Fundamentals 3-14

Merging Data

DECLARE

v_enpno EMPLOYEES. EMPLOYEE_ | DAATYPE : = 100;

BEG N

MERGE | NTO copy_enp c
USI NG enpl oyees e
ON (e. enpl oyee_id = v_enpno)
WHEN MATCHED THEN

c

. comm ssi on_pct
. manager _id

..comm ssi on_pct,
. manager _id,

UPDATE SET

first_nane = e.first_nane,
| ast _nane = e.l ast _nane,
.emni | = e.emni |
. phone_nunber = e. phone_nunber,
.hire_date = e.hire_date,
.job_id = e.job_id,
.sal ary = e.sal ary,

e

e

e

c
c
c
c
c
c
c
c
c

departnent _id .departnent _id

WHEN NOT MATCHED THEN
I NSERT VALUES(e. enpl oyee_id, e.first_nane, e.last_nane,

END,

e.emai |, e.phone_nunber, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.nmanager _id,
e. departent _id);

Oracle9i: PL/SQL Fundamentals 3-15

Naming Conventions

®* Use a naming convention to avoid ambiguity in the
VWHERE clause.

* Database columns and identifiers should have
distinct names.

®* Syntax errors can arise because PL/SQL checks
the database first for a column in the table.

®* The names of local variables and formal
parameters take precedence over the names of
database tables.

* The names of database table columns take
precedence over the names of local variables.

3-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Conventions

Avoid ambiguity in the WHERE clause by adhering to a naming convention that distinguishes
database column names from PL/SQL variable names.

» Database columns and identifiers should have distinct names.
* Syntax errors can arise because PL/SQL checks the database first for a column in the table.

Oracle9i: PL/SQL Fundamentals 3-16

Naming Conventions (continued)

The following table shows a set of prefixes and suffixes that distinguish identifiers from other

identifiers, database objects, and other named objects.

Identifier Naming Convention Example

Variable V_nane v_sal

Constant c_nane c_conpany_nane
Cursor name_cur sor enp_cursor
Exception e_nane e _too_nany
Tabletype nane_t abl e_type anount _t abl e_type
Table name_t abl e countries

Record type name_record_type |enp_record_type
Record name_record cust omer _record
iSQL*Plus substitution variable | p_nanme p_sal

(also referred to as substitution

parameter)

iSQL*Plus host or bind variable | g_nane g_year _sal

In such cases, to avoid ambiguity, prefix the names of loca variables and formal parameters with
V_v
asfollows:
DECLARE
v_last _nanme VARCHAR2(25);

Note: Thereisno possibility for ambiguity in the SELECT clause because any identifier in the
SELECT clause must be a database column name. There is no possibility for ambiguity inthel NTO
clause because identifiersin the | NTOclause must be PL/SQL variables. Thereisthe possibility of
confusion only in the WHERE clause.

Oracle9i: PL/SQL Fundamentals 3-17

SQL Cursor

®* Acursoris aprivate SQL work area.

®* There are two types of cursors:
— Implicit cursors
— Explicit cursors

®* The Oracle server uses implicit cursors to parse
and execute your SQL statements.

* Explicit cursors are explicitly declared by the
programmer.

3-18 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor

Whenever you issue a SQL statement, the Oracle server opens an area of memory in which the
command is parsed and executed. Thisareais caled a cursor.

When the executable part of ablock issues a SQL statement, PL/SQL creates an implicit cursor,
which PL/SQL manages automatically. The programmer explicitly declares and names an explicit
cursor. There are four attributes available in PL/SQL that can be applied to cursors.

Note: More information about explicit cursorsis covered in a subsequent lesson.
For more information, refer to PL/SQL User’s Guide and Reference, “ Interaction with Oracle.”

Oracle9i: PL/SQL Fundamentals 3-18

SQL Cursor Attributes

Using SQL cursor attributes, you can test the
outcome of your SQL statements.

SQLYRONCOUNT Number of rows affected by the
most recent SQL statement (an
integer value)

SQL%-OUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement affects one or more rows

SQLYNOTFOUND Boolean attribute that evaluates to
TRUE if the most recent SQL
statement does not affect any rows

SQL% SOPEN Always evaluates to FALSE because
PL/SQL closes implicit cursors
immediately after they are executed

3-19 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor Attributes
SQL cursor attributes allow you to eval uate what happened when an implicit cursor was last used.
Use these attributes in PL/SQL statements, but not in SQL statements.

Y ou can use the attributes SQLYRONCOUNT, SQL%-OUND, SQLYNOTFOUND, and SQL% SOPEN
in the exception section of a block to gather information about the execution of aDML statement.
PL/SQL does not return an error if a DML statement does not affect any rows in the underlying
table. However, if a SELECT statement does not retrieve any rows, PL/SQL returns an exception.

Oracle9i: PL/SQL Fundamentals 3-19

SQL Cursor Attributes

Delete rows that have the specified employee ID from
the EMPLOYEES table. Print the number of rows

deleted.
Example:
VARI ABLE rows_del et ed VARCHAR2(30)
DECLARE
v_enpl oyee i d enpl oyees. enpl oyee i dWYPE : = 176;
BEG N
DELETE FROM enpl oyees
WHERE enpl oyee id = v_enpl oyee_id;

crows_del eted : = (SQLYRONCOUNT | |
" row deleted.’);
END;
/
PRI NT rows_del et ed

3-20 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor Attributes (continued)

The example on the dide deletes the rows from the EMPLOYEES table for EMPLOYEE_| D 176.
Using the SQLYROWCOUNT attribute, you can print the number of rows deleted.

Oracle9i: PL/SQL Fundamentals 3-20

Transaction Control Statements

* |nitiate a transaction with the first DML command
to follow a COMM T or ROLLBACK.

® Use COW T and ROLLBACK SQL statements to
terminate a transaction explicitly.

3-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Transaction Control Statements

Y ou contral the logic of transactions with COVM T and ROLLBACK SQL statements, rendering
some groups of database changes permanent while discarding others. Aswith Oracle server, DML
transactions start at the first command that follows a COVM T or ROLLBACK, and end on the next
successful COMM T or ROLLBACK. These actions may occur within a PL/SQL block or as aresult
of eventsin the host environment (for example, in most cases, ending aiSQL* Plus session
automatically commits the pending transaction). To mark an intermediate point in the transaction
processing, use SAVEPQO NT.

COWM T [WORK] ;

SAVEPO NT savepoi nt _nane;

ROLLBACK [WORK] ;

ROLLBACK [WORK] TO [SAVEPO NT] savepoi nt _nane;
where: WORK is for compliance with ANSI standards.

Note: The transaction control commands are al valid within PL/SQL, although the host
environment may place some restriction on their use.

Y ou can also include explicit locking commands (such asLOCK TABLE and SELECT ... FOR
UPDATE) in ablock, which stays in effect until the end of the transaction (a subsequent |esson
covers more information on the FOR UPDATE command). Also, one PL/SQL block does not
necessarily imply one transaction.

Oracle9i: PL/SQL Fundamentals 3-21

Summary

In this lesson you should have learned how to:

* Embed SQL in the PL/SQL block using SELECT,
| NSERT, UPDATE, DELETE, and MERGE

* Embed transaction control statements in a PL/SQL
block COW T, ROLLBACK, and SAVEPO NT

3-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

The DML commands | NSERT, UPDATE, DELETE, and MERGE can be used in PL/SQL programs
without any restriction. The COMM T statement ends the current transaction and makes permanent
any changes made during that transaction. The ROLLBACK statement ends the current transaction
and cancels any changes that were made during that transaction. SAVEPQO NT names and marks the
current point in the processing of atransaction. With the ROLLBACK TOSAVEPQO NT statement,
you can undo parts of atransaction instead of the whole transaction.

Oracle9i: PL/SQL Fundamentals 3-22

Summary

In this lesson you should have learned the following:
®* There are two cursor types: implicit and explicit.

* Implicit cursor attributes are used to verify the
outcome of DML statements:

— SQLYRONCOUNT
— SQ%-OUND

— SQLYNOTFOUND
— SQL% SOPEN

* Explicit cursors are defined by the programmer.

3-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

Animplicit cursor is declared by PL/SQL for each SQL data manipulation statement. Every implicit
cursor has four attributes: %6-OUND, %84 SOPEN, %NOTFOUND, and %R0OWCOUNT. When appended
to the cursor or cursor variable, these attributes return useful information about the execution of a
DML statement. Y ou can use cursor attributesin procedural statements but not in SQL statements.
Explicit cursors are defined by the programmer.

Oracle9i: PL/SQL Fundamentals 3-23

Practice 3 Overview

This practice covers creating a PL/SQL block to:
® Select data from atable

®* |Insert data into atable

e Update datain atable

®* Delete arecord from atable

3-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 3 Overview

In this practice you write PL/SQL blocks to select, input, update, and delete information in atable,
using basic SQL query and DML statements within a PL/SQL block.

Oracle9i: PL/SQL Fundamentals 3-24

Practice 3

1. Create a PL/SQL block that selects the maximum department number in the DEPARTVENTS
table and storesit in an iISQL* Plus variable. Print the results to the screen. Save your PL/SQL
block in afilenamed p3qgl. sql . by clickingthe Save Scri pt button. Save the script
witha. sqgl extension.

| G_MAX_DEPTHO
| 270

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the
DEPARTMENTS table. Save the PL/SQL block inafile named p3qg2. sql by clicking the
Save Scri pt button. Savethe script witha. sql extension.

a. Usethe DEFI NE command to provide the department name. Name the new
department Educat i on.

b. Passthe value defined for the department name to the PL/SQL block through a
iSQL*Plus substitution variable. Rather than printing the department number retrieved
from exercise 1, add 10 to it and use it as the department number for the new
department.

c. Leavethelocation number as null for now.
d. Executethe PL/SQL block.
e. Display the new department that you created.

| DEPARTMENT ID | DEPARTMENT NAME | MANAGERID | LOCATION_ID
| 280 |Education | |

3. CreateaPL/SQL block that updates the location ID for the new department that you added in
the previous practice. Save your PL/SQL block in afile named p3g3. sql by clicking the
Save Script button. Savethe script witha. sql extension.

a. UseaniSQL*Plus variable for the department ID number that you added in the
previous practice.

b. Usethe DEFI NE command to provide the location ID. Name the new location ID
1700.

DEFI NE p_deptno = 280
DEFINE p_l oc = 1700

c. Passthe valueto the PL/SQL block through aiSQL* Plus substitution variable. Test the
PL/SQL block.

d. Display the department that you updated.

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION ID
| 280 |Education | | 1700

Oracle9i: PL/SQL Fundamentals 3-25

Practice 3 (continued)

4. Create aPL/SQL block that deletes the department that you created in exercise 2. Save the
PL/SQL block in afile named p3g4. sql . by clicking the Save Scri pt button. Save the
script witha. sql extension.

a. Usethe DEFI NE command to provide the department ID.
DEFI NE p_dept no=280

b. Passthe vaueto the PL/SQL block through aiSQL* Plus subgtitution variable. Print to
the screen the number of rows affected.

c. Testthe PL/SQL block.

| G_RESULT

|1 rone(s) deleted.

d. Confirmthat the department has been del eted.

ho rows selected

Oracle9i: PL/SQL Fundamentals 3-26

Writing Control Structures

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* |dentify the uses and types of control structures

* Construct an | F statement

* Use CASE expressions

®* Construct and identify different loop statements

®* Uselogic tables

* Control block flow using nested loops and labels

4-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn about conditional control within the PL/SQL block by using | F statements
and loops.

Oracle9i: PL/SQL Fundamentals 4-2

Controlling PL/SQL Flow of Execution

®* You can change the logical execution of
statements using conditional | F statements and

loop control structures.

* Conditional | F statements:
— | F-THEN-END | F
— | F-THEN- ELSE- END | F
— | F-THEN-ELSI F-END | F

4-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling PL/SQL Flow of Execution

Y ou can change the logical flow of statements within the PL/SQL block with a number of control
structures. Thislesson addresses three types of PL/SQL control structures: conditional constructs
with the | F statement, CASE expressions, and LOOP control structures (covered later in this|esson).

There are three forms of | F statements:
e |IF-THEN-END I F
e | F-THEN-ELSE-END | F
e |F-THEN-ELSIF-END | F

Oracle9i: PL/SQL Fundamentals 4-3

| F Statements

Syntax:

| F condition THEN
st at enent s;

[ELSIF condition THEN
statenents; |

[ELSE
statenents; |
END | F;
If the employee name is Gietz, set the Manager ID to
102.
| F UPPER(v_I| ast _nanme) = G ETZ THEN
v_mgr := 102;
END | F;
4-4 Copyright © Oracle Corporation, 2001. All rights reserved.

| F Statements

The structure of the PL/SQL | F statement is similar to the structure of | F statementsin other
procedural languages. It allows PL/SQL to perform actions selectively based on conditions.

In the syntax:

condition isaBoolean variable or expression (TRUE, FALSE, or NULL). (It
is associated with a sequence of statements, which is executed only
if the expression yields TRUE.)

THEN isaclause that associates the Boolean expression that precedes it
with the sequence of statements that followsit.

statements can be one or more PL/SQL or SQL statements. (They may include
further | F statements containing severa nested | F, ELSE, and ELSI F

statements.)

ELSI F isakeyword that introduces a Boolean expression. (If the first condition
yields FALSE or NULL then the ELSI F keyword introduces additional
conditions.)

ELSE is a keyword that executes the sequence of statements that follows

it if the control reachesit.

Oracle9i: PL/SQL Fundamentals 4-4

Simple IF Statements

If the last name is Vargas:
® SetjobIDto SA REP
e Set department number to 80

| F v_enane = 'Vargas’ THEN
v_job = ' SA REP :
v_dept no = 80;
END | F;
4-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Simple | F Statements

In the example on the dide, PL/SQL assigns values to the following variables, only if the condition
is TRUE:

v_j obandv_dept no

If the conditionis FALSE or NULL, PL/SQL ignoresthe statementsin the | F block. In either case,
control resumes at the next statement in the program following the END | F.

Guidelines
* You can perform actions selectively based on conditions that are being met.

« When writing code, remember the spelling of the keywords:
— ELSI Fisoneword.

— END | Fistwo words.

« If the controlling Boolean condition is TRUE, the associated sequence of statementsis
executed; if the controlling Boolean condition is FALSE or NULL, the associated sequence of
statements is passed over. Any number of ELSI F clauses are permitted.

 Indent the conditionally executed statements for clarity.

Oracle9i: PL/SQL Fundamentals 4-5

Compound IF Statements

If the last name is Vargas and the salary is more than
6500:

Set department number to 60.

IF v_enane = 'Vargas’ AND salary > 6500 THEN
v_deptno := 60;
END | F;
4-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Compound | F Statements

Compound | F statements use logical operators like AND and NOT. In the example on the dide, the
| F statement has two conditions to evaluate:

* Last name should be Vargas

» Salary should be greater than 6500
Only if both the above conditions are evaluated as TRUE, v_dept no is set to 60.
Consider the following example:

I F v_departnment = 60" OR v_hiredate > ' 01-Dec-1999' THEN
v_nmgr = 101;
END | F;

In the above example , the | F statement has two conditions to eval uate:
e Department ID should be 60
» Hire date should be greater than 01-Dec-1999
If either of the above conditions are evaluated as TRUE, v_ngr isset to 101.

Oracle9i: PL/SQL Fundamentals 4-6

| F- THEN- ELSE Statement Execution Flow

TRUE NOT TRUE
| F condition
THEN actions ELSE actions
(including further | F (including further I F
statements) statements)
Y Y
4-7 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSE Statement Execution Flow

Whilewriting an | F construct, if the condition is FALSE or NULL, you can use the EL SE clause to
carry out other actions. Aswith the smple | F statement, control resumes in the program from the
ENDI F clause. For example:

| F conditionl THEN
statenent 1;

ELSE
st at enent 2;

END | F;

Nested | F Statements

Either set of actions of the result of thefirst | F statement can include further | F statements before
specific actions are performed. The THEN and EL SE clauses can include | F statements. Each nested
| F statement must be terminated with a corresponding END | F clause.

| F conditi onl THEN
statenent 1;
ELSE
| F conditi on2 THEN
st at enent 2;
END | F;
END | F;

Oracle9i: PL/SQL Fundamentals 4-7

| F- THEN- ELSE Statements

Set a Boolean flag to TRUE if the hire date is greater
than five years; otherwise, set the Boolean flag to

FALSE.

DECLARE
v_hire date DATE := '12-Dec-1990’;
v_five_years BOOLEAN,

BEA N

| F MONTHS_BETWEEN(SYSDATE, v_hire_date)/ 12 > 5 THEN
v_five_years : = TRUE

ELSE
v_five_years := FALSE

END | F;

4-8 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSE Statements: Example

In the example on the dide, the MONTHS_BETWEEN function is used to find out the differencein
months between the current date and thev_hi r e _dat e variable. Because the result isthe
difference of the number of months between the two dates, the resulting value is divided by 12 to
convert the result into years. If the resulting value is greater than 5, the Boolean flag is set to TRUE;
otherwise, the Boolean flag is set to FALSE.

Consider the following example: Check thevalueinthe v_enane variable. If the valueisKing,
setthev_j ob variableto AD_PRES. Otherwise, setthev_j ob variableto ST _CLERK.

|F v_ename = 'King THEN
v_j ob = ' AD_PRES ;
ELSE
v_j ob = 'ST_CLERK ;
END | F;

Oracle9i: PL/SQL Fundamentals 4-8

| F- THEN- ELSI F
Statement Execution Flow

| F condition
NOT TRUE

ELSI F

THEN actions condition

TRUE NOT TRUE
THEN actions ELSE
actions
\ 4 A4
Y
4-9 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSI F Statement Execution Flow

Sometimes you want to select an action from several mutually exclusive dternatives. Thethird form
of | F statement uses the keyword ELSI F (not ELSEI F) to introduce additional conditions, as
follows:

| F conditionl THEN
sequence_of statenentsi;
ELSI F condition2 THEN
sequence_of _statenents2;
ELSE
sequence_of statenents3;
END I F;

Oracle9i: PL/SQL Fundamentals 4-9

| F- THEN- ELSI F Statement Execution Flow (continued)

If the first condition isfalse or null, the ELSI F clause tests another condition. An | F statement can
have any number of ELSI F clauses; the final ELSE clauseis optiona. Conditions are evaluated one
by one from top to bottom. If any condition istrue, its associated sequence of statementsis executed
and control passes to the next statement. If all conditions are false or null, the sequence in the ELSE
clauseis executed. Consider the following example: Determine an employee’ s bonus based upon the
employee’ s department.

| F v_deptno = 10 THEN
v_bonus : = 5000;

ELSI F v_deptno = 80 THEN
v_bonus := 7500;

ELSE
v_bonus : = 2000;
END | F,;

Note: In case of multiple | F—ELSI F statements only the first true statement is processed.

Oracle9i: PL/SQL Fundamentals 4-10

IF-THEN-ELSIF Statements

For a given value, calculate a percentage of that value
based on a condition.

Example:
I F v_start > 100 THEN
v_start := 0.2 * v_start,;
ELSIF v_start >= 50 THEN
v_start := 0.5 * v_start,;
ELSE
v_start := 0.1 * v_start,;
END | F;
4-11 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSI F Statements

When possible, usethe ELSI F clause instead of nesting | F statements. The codeis easier to read
and understand, and the logic is clearly identified. If the action in the EL SE clause consists purely of
another | F statement, it is more convenient to use the ELSI F clause. This makes the code clearer by
removing the need for nested END | F statements at the end of each further set of conditions and
actions.

Example

| F conditionl THEN
statenent 1;

ELSI F conditi on2 THEN
st at enent 2;

ELSI F conditi on3 THEN
st at enent 3;

END | F;

Theexample | F- THEN- ELSI F statement above is further defined as follows:

For agiven value, calculate a percentage of the origina value. If the value is more than 100, then the
calculated value is two times the starting value. If the value is between 50 and 100, then the
calculated value is 50% of the starting value. If the entered value is less than 50, then the calcul ated
valueis 10% of the starting value.

Note: Any arithmetic expression containing null values evaluates to null.

Oracle9i: PL/SQL Fundamentals 4-11

CASE Expressions

®* A CASE expression selects aresult and returns it.

®* To select the result, the CASE expression uses an
expression whose value is used to select one of
several alternatives.

CASE sel ect or
WHEN expressionl THEN resultl
VWHEN expression2 THEN result?2

VWHEN expressi onN THEN resul t N
[ELSE resul t N+1;]
END;

4-12 Copyright © Oracle Corporation, 2001. All rights reserved.

CASE Expressions

A CASE expression selects aresult and returns it. To select the result, the CASE expression uses a
selector, an expression whose value is used to select one of severa alternatives. The selector is
followed by one or more WHEN clauses, which are checked sequentialy. The value of the selector
determines which clause is executed. If the value of the selector equals the value of a WHEN-clause
expression, that WHEN clause is executed.

PL/SQL also provides a searched CASE expression, which has the form:
CASE

WHEN search_conditionl THEN resultl

WHEN search_conditi on2 THEN result?2

WHEN search_conditi onN THEN resul t N
[ELSE resul t N+1;]
END;
/

A searched CASE expression has no selector. Also, its WHEN clauses contain search conditions that
yield a Boolean value, not expressions that can yield avalue of any type.

Oracle9i: PL/SQL Fundamentals 4-12

CASE Expressions: Example

SET SERVEROUTPUT ON
DECLARE

v_appr ai sal VARCHAR2(20);
BEG N
v_appraisal :=
CASE v_gr ade

VWHEN ' C THEN ' Good’
ELSE ' No such grade’
END;

v_grade CHAR(1l) := UPPER(’ & grade’);

VWHEN " A° THEN ’ Excel | ent’
VWHEN ' B' THEN ' Very Good’

DBVS _QUTPUT. PUT_LINE (' Grade: || v_grade || ’
Appraisal ' || v_appraisal);
END;
/
4-13 Copyright © Oracle Corporation, 2001. All rights reserved.

CASE Expressions: Example

In the example on the dide, the CASE expression usesthe valueinthev_gr ade variable asthe
expression. Thisvaue is accepted from the user using a substitution variable. Based on the value
entered by the user, the CASE expression evaluates the value of thev_appr ai sal variable based

on the value of thev_gr ade value. The output of the above example will be asfollows:

old 2:w_grade CHAE(1) = TUFPEE(&p grade’;
new 2 v_grade CHAR(1) = TUPPEEa";

Grade: & Apprazal Excellent

PLIZQL procedure successfully completed.

Oracle9i: PL/SQL Fundamentals 4-13

CASE Expressions: Example (continued)

If the example on the dideis written using a searched CASE expression it will look like this:
REM When prompted, supply p_grade = ain the code below.

DECLARE
v_grade CHAR(1) := UPPER(’' &p_grade’);
v_apprai sal VARCHAR2(20);

BEG N
v_appraisal :=
CASE
WHEN v_grade = ' A" THEN ' Excel |l ent’
WHEN v_grade = 'B" THEN ' Very Good’
WHEN v_grade = 'C THEN ’ Good’
ELSE ' No such grade’
END;
DBVS_QOUTPUT. PUT_LI NE
("Gade: || v_grade || ' Appraisal ' || v_appraisal);
END;

/

Oracle9i: PL/SQL Fundamentals 4-14

Handling Nulls

When working with nulls, you can avoid some
common mistakes by keeping in mind the following

rules:

e Simple comparisons involving nulls always yield
NULL.

* Applying the logical operator NOT to a null yields
NULL.

* In conditional control statements, if the condition
yields NULL, its associated sequence of
statements is not executed.

4-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Handling Nulls

In the following example, you might expect the sequence of statements to execute because x and y
seem unequal . But, nulls are indeterminate. Whether or not x is equal to y is unknown. Therefore, the
I F condition yields NULL and the sequence of statements is bypassed.

X :=5;

y = NULL;

IF x '=y THEN -- yields NULL, not TRUE
sequence_of statenents; -- not executed

END I F;

In the next example, you might expect the sequence of statements to execute because a and b seem
equal. But, again, that is unknown, so the | F condition yields NULL and the sequence of statements
is bypassed.

a : = NULL;

b := NULL;

IFa=D>bTHEN -- yields NULL, not TRUE
sequence_of statenents; -- not executed

END | F;

Oracle9i: PL/SQL Fundamentals 4-15

Logic Tables

Build a simple Boolean condition with a comparison

oper ator.
AND | TRUE [FALSE | NULL OR | TRUE |FALSE | NULL NOT
TRUE | TRUE |[FALSE | NULL | [TRUE | TRUE | TRUE | TRUE TRUE | FALSE
FALSE |FALSE |FALSE |FALSE| [FALSE | TRUE |FALSE | NULL FALSE | TRUE
NULL | NULL |FALSE | NULL NULL [TRUE | NULL | NULL NULL | NULL

4-16

Copyright © Oracle Corporation, 2001. All rights reserved.

Boolean Conditions with Logical Operators
Y ou can build a simple Boolean condition by combining number, character, or date expressions with

comparison operators.
Y ou can build a complex Boolean condition by combining simple Boolean conditions with the

logica operators AND, OR, and NOT. In the logic tables shown in the dide:
» FALSE takes precedence in an AND condition and TRUE takes precedence in an OR condition.

* AND returns TRUE only if both of its operands are TRUE.
* ORreturns FALSE only if both of its operands are FALSE.
* NULL AND TRUE always evaluate to NULL becauseit is not known whether the second

operand evaluates to TRUE or not.

Note: The negation of NULL (NOT NULL) resultsin anull value because null values are
indeterminate.

Oracle9i: PL/SQL Fundamentals 4-16

Boolean Conditions

What is the value of V_FLAGIn each case?

v_flag := v_reorder_flag AND v_avail abl e_f1 ag;
V_RECRDER FLAG V_AVAI LABLE _FLAG V_FLAG
TRUE TRUE ?
TRUE FALSE ?
NULL TRUE ?
NULL FALSE ?
4-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Building Logical Conditions
The AND logic table can help you evaluate the possibilities for the Boolean condition on the dide.

Answers
1. TRUE
2. FALSE
3. NULL
4. FALSE

Oracle9i: PL/SQL Fundamentals 4-17

lterative Control: LOOP Statements

* Loops repeat a statement or sequence of
statements multiple times.

®* There are three loop types:

— Basic loop
— FORIoop
— WHI LE loop

4-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Iterative Control: LOOP Statements

PL/SQL provides a number of facilitiesto structure loopsto repeat a statement or sequence of
statements multiple times.

L ooping congtructs are the second type of control structure. PL/SQL provides the following types of
loops:

» Basicloop that perform repetitive actions without overall conditions

* FORIloopsthat perform iterative control of actions based on a count

* \\H LE loopsthat perform iterative control of actions based on acondition

Usethe EXI T statement to terminate loops.
For more information, refer to PL/SQL User’s Guide and Reference, “ Control Structures.”
Note: Another type of FOR LOOP, cursor FOR LQOOP, is discussed in a subsequent lesson.

Oracle9i: PL/SQL Fundamentals 4-18

Basic Loops

Syntax:

LOOP -- delimter

st at ement 1; -- statenents

EXIT [WHEN condi tion]; -- EXIT statenent
END LOCP; -~ deliniter
condi tion is a Bool ean vari abl e or

expression (TRUE, FALSE, or NULL);

4-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Basic Loops

The ssimplest form of LOOP statement is the basic (or infinite) loop, which encloses a sequence of
statements between the keywords LOOP and END L OOP. Each time the flow of execution reaches
the END LQOOP statement, control is returned to the corresponding L OOP statement aboveit. A basic
loop allows execution of its statement at least once, even if the condition is already met upon
entering the loop. Without the EXI T statement, the loop would be infinite.

The EXI T Statement

You can usethe EXI T statement to terminate aloop. Control passes to the next statement after the
END LOOP statement. You canissue EXI T either asan action within an | F statement or asa
stand-alone statement within the loop. The EXI T statement must be placed inside aloop. In the
latter case, you can attach a WHEN clause to allow conditional termination of the loop. When the
EXI T statement is encountered, the condition in the WHEN clause is evaluated. If the condition
yields TRUE, the loop ends and control passesto the next statement after the loop. A basic loop can
contain multiple EXI T statements.

Oracle9i: PL/SQL Fundamentals 4-19

Basic Loops

Example:
DECLARE
v_country_id | ocations.country_ i d%YPE := ' CA;
v_location_id | ocations. | ocation_i d%IYPE;
v_counter NUMBER(2) := 1;
V_City | ocations.city%W YPE : = ' Montreal ' ;
BEG N

SELECT MAX(l ocation_id) INTO v_|location_id FROM | ocati ons
WHERE country_id = v_country_id;
LOoP
I NSERT | NTO | ocations(l ocation_id, city, country_id)
VALUES((v_location_id + v_counter),v_city, v_country_id);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 3;
END LOOP;
END;
/

4-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Basic Loops (continued)

The basic loop example shown on the dideis defined as follows: Insert three new locations IDs for
the country code of CA and the city of Montreal.

Note: A basicloop allows execution of its statements at |east once, even if the condition has been
met upon entering the loop, provided the condition is placed in the loop so that it is not checked until
after these statements. However, if the exit condition is placed at the top of the loop, before any of
the other executable statements, and that condition is true, the loop will exit and the statements will
never execute.

Oracle9i: PL/SQL Fundamentals 4-20

VWH LE Loops

Syntax:
VHI LE condition LOOP == Condition is
st at enent 1 evaluated at the
st at enent 2; beginning of

each iteration.

END LOOP;

Use the WHI LE loop to repeat statements while a
condition is TRUE.

4-21 Copyright © Oracle Corporation, 2001. All rights reserved.

VWHI LE Loops

Y ou can usethe VWHI LE loop to repeat a sequence of statements until the controlling conditionis no
longer TRUE. The condition is evaluated at the start of each iteration. The |oop terminates when the
condition is FALSE. If the condition is FALSE at the start of the loop, then no further iterations are
performed.

In the syntax:
condition isaBoolean variable or expression (TRUE, FALSE, or NULL).
statement can be one or more PL/SQL or SQL statements.

If the variablesinvolved in the conditions do not change during the body of the loop, then the
condition remains TRUE and the loop does not terminate.

Note: If the condition yields NULL, the loop is bypassed and control passes to the next statement.

Oracle9i: PL/SQL Fundamentals 4-21

VWH LE Loops

Example:

DECLARE
v_country id | ocations.country idWYPE :="CA;
v_location_id | ocations. | ocation_ i d%IYPE;
V_City | ocations.city%W YPE : = ' Montreal ' ;
v_count er NUVBER := 1;

BEG N

SELECT MAX(location_id) INTO v_location_id FROM | ocati ons
VWHERE country_id = v_country_id;
VWH LE v_counter <= 3 LOOP
I NSERT | NTO | ocations(location_id, city, country_id)
VALUES((v_l ocation_id + v_counter), v_city, v_country_id);
v_counter := v_counter + 1;
END LOCP;
END;
/

4-22 Copyright © Oracle Corporation, 2001. All rights reserved.

VWHI LE Loops (continued)

In the example on the dide, three new locations IDs for the country code of CA and the city of
Montreal are being added.

With each iteration through the WHI LE loop, a counter (v_count er) isincremented. If the number
of iterationsislessthan or equal to the number 3, the code within the loop is executed and arow is
inserted into the LOCATI ONS table. After the counter exceeds the number of items for thislocation,
the condition that controls the loop evaluates to FALSE and the loop is terminated.

Oracle9i: PL/SQL Fundamentals 4-22

FOR Loops

Syntax:

FOR counter | N [REVERSE]
| ower bound. . upper _bound LOOP
stat enent 1,
st at enent 2;

END LOOP;

® Use aFORIoop to shortcut the test for the number
of iterations.

* Do not declare the counter; it is declared

implicitly.
* 'l ower _bound .. upper_bound’is required
syntax.
4-23 Copyright © Oracle Corporation, 2001. All rights reserved.

FORLoops

FOR loops have the same general structure as the basic loop. In addition, they have a control
statement before the LOOP keyword to determine the number of iterations that PL/SQL performs. In
the syntax:

counter isanimplicitly declared integer whose value automatically increases or
decreases (decreases if the REVERSE keyword is used) by 1 on each iteration of
the loop until the upper or lower bound is reached.

REVERSE causes the counter to decrement with each iteration from the upper bound to the
lower bound. (Note that the lower bound is still referenced first.)

lower_bound specifies the lower bound for the range of counter values.
upper_bound specifies the upper bound for the range of counter values.
Do not declare the counter; it is declared implicitly as an integer.

Note: The sequence of statementsis executed each time the counter isincremented, as determined

by the two bounds. The lower bound and upper bound of the loop range can be literals, variables, or
expressions, but must evaluate to integers. The lower bound and upper bound are inclusivein the
loop range . If the lower bound of the loop range evaluates to alarger integer than the upper bound,
the sequence of statementswill not be executed, provided REVERSE has not been used. For example
the following, statement is executed only once:

FOR i IN 3..3 LOOP statenentl1l; END LOCP;

Oracle9i: PL/SQL Fundamentals 4-23

FOR Loops

Insert three new locations IDs for the country code of CA
and the city of Montreal.

DECLARE
v_country id | ocations.country idWYPE :="'CA;
v_location_id | ocations. | ocation_i d%IYPE;
V_City | ocations.city%YPE : = 'Montreal ’;
BEG N

SELECT MAX(location_id) INTO v_location_id
FROM | ocat i ons
WHERE country_id = v_country_id;
FORi IN1..3 LOOP
I NSERT | NTO | ocations(l ocation_id, city, country_id)
VALUES((v_l ocation_id + i), v_city, v_country_id);
END LOCP;
END;
/

4-24 Copyright © Oracle Corporation, 2001. All rights reserved.

FOR Loops (continued)

The example shown on the dide is defined as follows: Insert three new locations for the country
code of CA and the city of Montreal.

Thisis done using a FOR loop.

Oracle9i: PL/SQL Fundamentals 4-24

FOR Loops

Guidelines

* Reference the counter within the loop only; itis
undefined outside the loop.

®* Do not reference the counter as the target of an
assignment.

4-25 Copyright © Oracle Corporation, 2001. All rights reserved.

FOR Loops (continued)
The dlide lists the guidelinesto follow while writinga FOR Loop.

Note: While writing a FOR loop, the lower and upper bounds of a L OOP statement do not need to be
numeric literals. They can be expressionsthat convert to numeric values.
Example
DECLARE
v_| ower NUMBER :

V_upper NUMBER
BEG N

FOR i IN v_lower..v_upper LOOP

1,
100;

END LOOP:
END;

Oracle9i: PL/SQL Fundamentals 4-25

Guidelines While Using Loops

®* Usethe basic loop when the statements inside the
loop must execute at least once.

® Usethe WHI LE loop if the condition has to be
evaluated at the start of each iteration.

® Use aFORIoop if the number of iterations is known.

4-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines While Using Loops

A basic loop allows execution of its statement at least once, even if the condition is already met upon
entering the loop. Without the EXI T statement, the loop would be infinite.

Y ou can use the WHI LE loop to repeat a sequence of statements until the controlling conditionis no
longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates when the
condition is FALSE. If the condition is FALSE at the start of the loop, then no further iterations are
performed.

FOR loops have a control statement before the LOOP keyword to determine the number of iterations
that PL/SQL performs. Use aFORloop if the number of iterationsis predetermined.

Oracle9i: PL/SQL Fundamentals 4-26

Nested Loops and Labels

®* Nest loops to multiple levels.

® Use labels to distinguish between blocks and
loops.

* Exit the outer loop with the EXI T statement that
references the label.

4-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Loops and Labels

Y ou can nest loops to multiple levels. You can nest FOR, WHI LE, and basic loops within one
another. The termination of a nested loop does not terminate the enclosing loop unless an exception
was raised. However, you can label loops and exit the outer loop with the EXI T statement.

Label names follow the same rules as other identifiers. A label is placed before a statement, either on
the same line or on a separate line. Label loops by placing the label before the word LOOP within
label delimiters (<<label>>).

If the loop islabeled, the label name can optionally be included after the END L OOP statement for
clarity.

Oracle9i: PL/SQL Fundamentals 4-27

Nested Loops and Labels

BEG N

<<Qut er _| oop>>
LOOP
v_counter := v_counter+1;

EXIT WHEN v_count er >10;
<<l nner _| oop>>
LOOP

EXIT Quter | oop WHEN total done = 'YES ;
-- Leave both | oops

EXIT WHEN i nner_done = ' YES';

-- Leave inner |l oop only

EN-D- LCIP I nner _| oop;

ENb' LOCP Qut er | oop;
END;

4-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Loops and Labels (continued)

In the example on the dide, there are two loops. The outer loop isidentified by the label,

<<Qut er _Loop>> and theinner loop isidentified by the label <<I nner _Loop>>. The
identifiers are placed before the word LOOP within label delimiters (<<label>>). Theinner loopis
nested within the outer loop. The label names are included after the END LOOP statement for

clarity.

Oracle9i: PL/SQL Fundamentals 4-28

Summary

In this lesson you should have learned how to:

Change the logical flow of statements by using
control structures.

* Conditional (I F statement)

* CASE Expressions

* Loops:

Basic loop
FORIoop
VWH LE loop

e EXI T statements

4-29

Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A conditiona control construct checks for the validity of acondition and performs a corresponding
action accordingly. You usethe | F construct to perform a conditional execution of statements.

An iterative control construct executes a sequence of statements repeatedly, aslong as a specified
condition holds TRUE. Y ou use the various |oop constructs to perform iterative operations.

Oracle9i: PL/SQL Fundamentals 4-29

Practice 4 Overview

This practice covers the following topics:

* Performing conditional actions using the | F
statement

* Performing iterative steps using the loop structure

4-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 4 Overview

In this practice, you create PL/SQL blocks that incorporate loops and conditional control structures.
The practices test the understanding of the student about writing various | F statements and LOOP
constructs.

Oracle9i: PL/SQL Fundamentals 4-30

Practice 4

1. Executethe commandinthefilel ab04_1. sql to create the MESSACES table. Write a
PL/SQL black to insert numbers into the MESSAGES table.

a. Insert the numbers 1 to 10, excluding 6 and 8.
b. Commit before the end of the block.
c. Select from the MESSAGES table to verify that your PL/SQL block worked.

RESULTS

3 rows selected.

2. Create a PL/SQL block that computes the commission amount for a given employee based
on the employee' s salary.

a. Usethe DEFI NE command to provide the employee ID. Pass the value to the PL/SQL

e

f.

block through ai SQL* Plus substitution variable.
DEFI NE p_enpno = 100

If the employee’ s sdlary is less than $5,000, display the bonus amount for the employee
as 10% of the salary.

If the employe€’ s salary is between $5,000 and $10,000, display the bonus amount for
the employee as 15% of the salary.

. If theemployee’ s salary exceeds $10,000, display the bonus amount for the employee

as
20% of the salary.

If the employee' s salary isNULL, display the bonus amount for the employee as 0.

Test the PL/SQL block for each case using the following test cases, and check each
bonus amount.

Note: Include SET VERI FY OFF inyour solution.

Employee Number Salary Resulting Bonus
100 24000 4800
149 10500 2100
178 7000 1050

Oracle9i: PL/SQL Fundamentals 4-31

Practice 4 (continued)
If you have time, compl ete the following exercises:

3. Create an EVP table that is areplica of the EMPLOYEES table. Y ou can do this by executing
the
script | ab04_3. sgl . Add anew column, STARS, of VARCHAR2 data type and length of
50 to the EMP table for storing asterisk (*).

Table altered.

4. Create aPL/SQL block that rewards an employee by appending an asterisk in the STARS
column for every $1000 of the employee's salary. Save your PL/SQL block in afile called
p4g4. sql by clickingonthe Save Scri pt button. Remember to save the script with a
. sql extension.

a. Usethe DEFI NE command to provide the employee ID. Pass the val ue to the PL/SQL
block through aiSQL* Plus substitution variable.

DEFI NE p_enpno=104
b. Initidizeav_ast eri sk variablethat containsa NULL.

c. Append an asterisk to the string for every $1000 of the salary amount. For example, if
the employee has a salary amount of $8000, the string of asterisks should contain eight
asterisks. If the employee has a salary amount of $12500, the string of asterisks should
contain 13 asterisks.

d. Update the STARS column for the employee with the string of asterisks.
Commit.

f. Test the block for the following values:
DEFI NE p_enpno=174
DEFI NE p_enpno=176

g. Display the rows from the EMP table to verify whether your PL/SQL block has
executed successfully.

| EMPLOYEE_ID | SALARY | STARS
| 104 | OO0 |~

| 174 | 11000 | e

| 176 | BRO0 |

Note: SET VERI FY OFF inthe PL/SQL block

Oracle9i: PL/SQL Fundamentals 4-32

Working with Composite
Data Types

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Create user-defined PL/SQL records

®* Create arecord with the ROMYPE attribute
* Create an | NDEX BY table

®* Create an | NDEX BY table of records

* Describe the difference between records, tables,
and tables of records

5-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In this lesson, you learn more about composite data types and their uses.

Oracle9i: PL/SQL Fundamentals 5-2

Composite Data Types

* Are of two types:
— PL/SQL RECORDs

— PL/SQL Collections
— | NDEX BY Table

— Nested Table
— VARRAY

®* Contain internal components
* Arereusable

5-3 Copyright © Oracle Corporation, 2001. All rights reserved.

RECORD and TABLE Data Types

Like scalar variables, composite variables have a data type. Composite data types (also known as
collections) are RECORD, TABLE, NESTED TABLE, and VARRAY. Y ou use the RECORD data type to
treat related but dissimilar dataas alogical unit. Y ou use the TABLE datatype to reference and

mani pulate collections of data as awhole object. The NESTED TABLE and VARRAY datatypes are
covered in the Advanced PL/SQL course.

A record isagroup of related data items stored as fields, each with its own name and data type. A
table contains a column and a primary key to give you array-like accessto rows. After they are
defined, tables and records can be reused.

For more information, refer to PL/SQL User’s Guide and Reference, “ Collections and Records.”

Oracle9i: PL/SQL Fundamentals 5-3

5-4

PL/SQL Records

®* Must contain one or more components of any scalar,
RECORD, or | NDEX BY table data type, called fields

® Are similar in structure to records in a third
generation language (3GL)

* Are notthe same as rows in a database table
* Treat a collection of fields as a logical unit

* Are convenient for fetching a row of data from a table
for processing

Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Records

A record isagroup of related dataitems stored in fields, each with its own name and data type. For
example, suppose you have different kinds of data about an employee, such as name, saary, hire date,
and so on. Thisdataisdissimilar in type but logically related. A record that contains such fields as the
name, salary, and hire date of an employee alows you to treat the data as alogical unit. When you
declare arecord type for these fields, they can be manipulated as a unit.

Each record defined can have as many fields as necessary.

Records can be assigned initial values and can be defined as NOT NULL.
Fields without initial values areinitialized to NULL.

The DEFAULT keyword can a so be used when defining fields.

Y ou can define RECORD types and declare user-defined records in the declarative part of any
block, subprogram, or package.

Y ou can declare and reference nested records. One record can be the component of another
record.

Oracle9i: PL/SQL Fundamentals 5-4

Creating a PL/SQL Record

Syntax:

TYPE type_nane |S RECORD
(field declaration[, field declaration].);
identifier t ype_nane;

Where field_declaration is:

field name {field type | variabl eddYPE
| table.colum%YPE | tabl e%ROMYPE}
[[NOT NULL] {:=| DEFAULT} expr]

5-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining and Declaring a PL/SQL Record
To create arecord, you define a RECORD type and then declare records of that type.

In the syntax:

type_name is the name of the RECORD type. (Thisidentifier is used to declare
records.)

field_name is the name of afield within the record.

field_type isthe datatype of the fidd. (It represents any PL/SQL datatype
except REF CURSOR. Y ou can use the %' YPE and YRONTYPE
attributes.)

expr isthefield_type or aninitia value.

The NOT NULL constraint prevents assigning nulls to those fields. Be sureto initialize NOT NULL
fields.

Oracle9i: PL/SQL Fundamentals 5-5

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of
a new employee.

Example:

TYPE enp_record_type IS RECORD
(last _nane VARCHARZ2(25),

job_id VARCHAR2(10) ,
sal ary NUMVBER(8, 2)) ;
enp_record enp_record_type;
5-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a PL/SQL Record

Field declarations are like variable declarations. Each field has a unique name and a specific data type.
There are no predefined data types for PL/SQL records, asthere are for scalar variables. Therefore,
you must create the record type first and then declare an identifier using that type.

In the example on the dide, aEMP_RECORD_TYPE record type is defined to hold the values for the
| ast _nane,j ob_i d,andsal ary. Inthe next step, arecord EMP_RECCRD, of thetype
EMP_RECORD TYPE isdeclared.

The following example shows that you can use the % YPE attribute to specify afield datatype:
DECLARE
TYPE enp_record_type |'S RECORD

(enpl oyee_i d NUVMBER(6) NOT NULL := 100,
| ast _nane enpl oyees. | ast _nane%l YPE,
job_id enpl oyees. j ob_i dWIYPE) ;
enp_record enp_record_type;

Note: You can add the NOT NULL constraint to any field declaration to prevent assigning nullsto
that field. Remember, fields declared as NOT NULL must be initialized.

Oracle9i: PL/SQL Fundamentals 5-6

PL/SQL Record Structure

5-7 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Record Structure

Fieldsin arecord are accessed by name. To reference or initialize an individua field, use dot notation
and the following syntax:

record _nane. field nane

For example, you referencethej ob_i d fieldintheenp_r ecor d record asfollows:
enp_record.job_id ...

Y ou can then assign a value to the record field as follows:
enp_record.job_id :="'ST CLERK ;

In ablock or subprogram, user-defined records are instantiated when you enter the block or
subprogram and cease to exist when you exit the block or subprogram.

Oracle9i: PL/SQL Fundamentals 5-7

The YROMYPE Attribute

®* Declare a variable according to a collection of
columns in a database table or view.

* Prefix “ROMYPE with the database table.

* Fields in the record take their names and data
types from the columns of the table or view.

5-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Records with the Y“ROMYPE Attribute

To declare arecord based on a collection of columns in a database table or view, you use the
URONYPE attribute. The fields in the record take their names and data types from the columns of the
table or view. The record can aso store an entire row of datafetched from acursor or cursor variable.

In the following example, arecord is declared using “RON YPE as a data type specifier.

DECLARE
enp_record enpl oyees¥YROWYPE;

Theenp_r ecor d record will have a structure consisting of the following fields, each representing a
column in the EMPLOYEES table.

Note: Thisis not code, but smply the structure of the composite variable.

(enpl oyee_id NUMVBER(6) ,
first_nane VARCHAR2(20) ,
| ast _nane VARCHAR2(20) ,
enmai | VARCHAR2(20) ,
phone_nunber VARCHAR2(20) ,
hire_date DATE,
sal ary NUMBER(8, 2) ,
comm ssi on_pct NUMBER(2, 2) ,
manager i d NUVBER(6) ,
department id NUVBER(4))

Oracle9i: PL/SQL Fundamentals 5-8

Declaring Records with the Y“RONMYPE Attribute (continued)

Syntax
DECLARE
identifier r ef er enceROMYPE;
where identifier is the name chosen for the record as awhole.

reference is the name of the table, view, cursor, or cursor
variable on which the record is to be based. The table or view must
exist for thisreference to be valid.

To reference an individual field, you use dot notation and the following syntax:
record_nane. fiel d_nane
For example, you referencethe comni ssi on_pct fieldintheenp_record record asfollows:
enp_record. conmi ssi on_pct
Y ou can then assign a value to the record field as follows:
enp_record. conmi ssi on_pct: = . 35;
Assigning Values to Records

You can assign alist of common valuesto arecord by using the SELECT or FETCH statement. Make

sure that the column names appear in the same order asthe fieldsin your record. You can also assign
one record to another if they have the same datatype. A user-defined record and a %60 YPE record

never have the same data type.

Oracle9i: PL/SQL Fundamentals 5-9

Advantages of Using YROMYPE

* The number and data types of the underlying
database columns need not be known.

* The number and data types of the underlying
database column may change at run time.

®* The attribute is useful when retrieving a row with
the SELECT * statement.

5-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Using YROM YPE

The advantages of using the ¥6R0W YPE attribute are listed on the dide. Use the %R0M YPE attribute
when you are not sure about the structure of the underlying database table. Using this attribute aso
ensures that the data types of the variables declared using this attribute change dynamically, in case the
underlying table is atered. This attribute is particularly useful when you want to retrieve an entire row
from atable. In the absence of this attribute, you would be forced to declare a variable for each of the
columnsretrieved by the SELECT * statement.

Oracle9i: PL/SQL Fundamentals 5-10

The “UROMYPE Attribute

Examples:

Declare a variable to store the information about a
department from the DEPARTMENTS table.

dept record depar t ment s¥%4ROMYPE;

Declare a variable to store the information about an
employee from the EMPLOYEES table.

enp_record enpl oyeesYRON YPE;

5-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The YROMYPE Attribute

Thefirst declaration on the dide creates a record with the same field names and field data types as a
row in the DEPARTMENTS table. The fields are DEPARTMENT _|I D, DEPARTMENT _NAME,
MANAGER | D, and LOCATI ON_I D. The second declaration creates a record with the same field
names, field datatypes, and order as arow in the EMPLOYEES table. The fields are EMPLOYEE | D,
FI RST_NAME, LAST_NAME, EMAI L, PHONE_NUMBER, H RE_DATE, JOB_| D, SALARY,

COW SSI ON_PCT, MANAGER _| D, DEPARTMENT _I D.

Oracle9i: PL/SQL Fundamentals 5-11

The “RONMYPE Attribute (continued)

In the following example, an employee isretiring. Information about aretired employee is added to a
table that holds information about retired employees. The user supplies the employee’ s number. The
record of the employee specified by the user is retrieved from the EMPLOYEES and stored into the
enp_r ec variable, which is declared using the RON YPE attribute.

DEFI NE enpl oyee_nunber = 124

DECLARE
enp_rec enpl oyees¥ROMYPE;

BEG N
SELECT * I NTO enp_rec
FROM enpl oyees
WHERE enpl oyee id = &enpl oyee nunber;
I NSERT I NTO retired_enps(enpno, ename, job, ngr, hiredate,

| eavedate, sal, comm deptno)

VALUES (enp_rec. enpl oyee_id, enp_rec.last_nane, enp_rec.job_id,
enp_rec. manager _id, enp_rec.hire_date, SYSDATE, enp_rec.salary,
enp_rec. comi ssion_pct, enp_rec.departnent _id);
COW T;

END;

/

Therecord that isinserted into the RETI RED_EMPS tableis shown below:

SELECT * FROM RETI RED_EMPS;

|[EMPNO |ENAME | JOB |MGR |HIREDATE |LEAVEDATE |SAL |[COMM |DEPTNO
| 124 Mourgos |ST_MANM | 100 [16-MOW-99 |24-SEP-D1 |5800 | | 500

Oracle9i: PL/SQL Fundamentals 5-12

| NDEX BY Tables

* Arecomposed of two components:
— Primary key of data type Bl NARY_| NTEGER

— Column of scalar or record data type

® Canincrease in size dynamically because they are
unconstrained

5-13 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Tables

Objects of the TABLE type are called | NDEX BY tables. They are modeled as (but not the same as)
databasetables. | NDEX BY tables use a primary key to provide you with array-like access to rows.

A | NDEX BY table:
* Issimilar to an array
* Must contain two components:
— A primary key of datatype Bl NARY | NTEGER that indexesthe | NDEX BY table
— A column of ascalar or record datatype, which storesthe | NDEX BY table e ements
» Canincrease dynamically because it is unconstrained

Oracle9i: PL/SQL Fundamentals 5-13

Creating an | NDEX BY Table

Syntax:

TYPE type_nanme |S TABLE OF
{colum_type | variabl e%dYPE
| table.col um%YPE} [NOT NULL]
| tabl e. “RONMYPE
[NDEX BY BI NARY_I| NTECGER] ;
identifier t ype_nane;

Declare an | NDEX BY table to store names.
Example:

TYPE enane_tabl e _type IS TABLE OF
enpl oyees. | ast _nanme% YPE

| NDEX BY Bl NARY | NTEGER,;
enane_t abl e enane_t abl e_type;

5-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a | NDEX BY Table
There are two stepsinvolved in creating al NDEX BY table.
1. Declarea TABLE datatype.
2. Declare avariable of that datatype.
In the syntax:

type_name isthe name of the TABLE type. (It isatype specifier used in
subsequent declarations of PL/SQL tables.)

column_type isany scalar (scalar and composite) data type such as VARCHARZ,
DATE, NUMBER or %I'YPE. (You can use the % YPE attribute to
provide the column datatype.)

identifier isthe name of the identifier that represents an entire PL/SQL table.

The NOT NULL constraint prevents nulls from being assigned to the PL/ SQL table of that type. Do
not initializethe | NDEX BY table.

| NDEX- BY tables can have the following element types: Bl NARY_| NTEGER, BOOLEAN, LONG,
LONG RAW NATURAL, NATURALN,PLS | NTEGER, POSI Tl VE, POSI TI VEN, SI GNTYPE, and
STRI NG. | NDEX- BY tables areinitialy sparse. That enables you, for example, to store reference data
inan | NDEX- BY table using a numeric primary key as the index.

Oracle9i: PL/SQL Fundamentals 5-14

| NDEX BY Table Structure

Unique identifier Column
1 Jones
Smith
3 Maduro
Bl NARY_| NTEGER Scalar
5-15 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Table Structure

Like the size of adatabase table, the size of al NDEX BY tableisunconstrained. That is, the number
of rowsinal NDEX BY table can increase dynamically, so that your | NDEX BY table grows as new
rows are added.

| NDEX BY tables can have one column and a unique identifier to that one column, neither of which
can be named. The column can belong to any scalar or record data type, but the primary key must
belong to type Bl NARY _| NTEGER. Y ou cannot initialize an | NDEX BY tablein its declaration. An
| NDEX BY tableis not populated at the time of declaration. It contains no keys or no values. An
explicit executable statement is required to initialize (populate) the | NDEX BY table.

Oracle9i: PL/SQL Fundamentals 5-15

Creating an | NDEX BY Table

DECLARE
TYPE enane_tabl e _type IS TABLE OF
enpl oyees. | ast _nanme% YPE
| NDEX BY Bl NARY_| NTEGER
TYPE hiredate_table type IS TABLE OF DATE
| NDEX BY Bl NARY_| NTEGER

enane_t abl e enane_t abl e_type;

hiredate_t abl e hi redat e_t abl e _type;
BEG N

enane_t abl e(1) : = ' CAMERON ;

hiredate_tabl e(8) := SYSDATE + 7,
| F enane_t abl e. EXI STS(1) THEN

| NSERT | NTO . ..
END;
5-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing an | NDEX BY Table

Syntax:
| NDEX_BY _table name(primary_key value)
where: primary key value belongsto type Bl NARY_| NTEGER.

Reference the third row in an | NDEX BY table ENAME_TABLE:
enane_t abl e(3)

The magnitude range of aBl NARY _| NTEGER is-2147483647 ... 2147483647, so the primary key
value can be negative. Indexing does not need to start with 1.

Note: Thet abl e. EXI STS(i) statement returns TRUE if arow withindex i isreturned. Usethe
EXI STS statement to prevent an error that is raised in reference to a nonexisting table element.

Oracle9i: PL/SQL Fundamentals 5-16

Using | NDEX BY Table Methods

The following methods make INDEX BY tables
easier to use:

— EXI STS — NEXT
— COUNT — TRIM
— FIRST and LAST — DELETE
- PRICR

5-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using | NDEX BY Table Methods

A 1 NDEX BY table method is abuilt-in procedure or function that operates on tablesand is called
using dot notation.

Syntax: t abl e_nane. net hod_nane[(paraneters)]

Method Description
EXI STS(n) Returns TRUE if the nth element in a PL/SQL table exists
COUNT Returns the number of elementsthat a PL/SQL table currently
contains
FI RST Returns the first and last (smallest and largest) index numbersin a
LAST PL/SQL table. Returns NULL if the PL/SQL tableis empty.
PRI OR(n) Returns the index number that precedesindex nin aPL/SQL table
NEXT(n) Returns the index number that succeedsindex nin a PL/SQL table
TRIM TRI Mremoves one element from the end of a PL/SQL table.
TRI M n) removes n elements from the end of a PL/SQL table.
DELETE DELETE removes all elementsfrom a PL/SQL table.
DELETE(n) removesthe nth element from a PL/SQL table.
DELETE(m n) removesall elementsintherangem... nfroma
PL/SQL table.

Oracle9i: PL/SQL Fundamentals 5-17

| NDEX BY Table of Records

* Define a TABLE variable with a permitted PL/SQL
data type.

®* Declare a PL/SQL variable to hold department
information.

Example:

DECLARE
TYPE dept _table type IS TABLE OF
depar t ment s%ROMYPE
| NDEX BY BI NARY_I NTEGER;
dept _tabl e dept_table type;
-- Each el enment of dept table is a record

5-18 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Table of Records

At agiven point of time, al NDEX BY table can store only the details of any one of the columns of a
database table. There is aways a necessity to store all the columnsretrieved by a query. The | NDEX
BY table of records offer a solution to this. Because only one table definition is needed to hold
information about all of the fields of a database table, the table of records greatly increases the
functionality of | NDEX BY tables.

Referencing a Table of Records

In the exampl e given on the dlide, you can refer to fieldsin the DEPT_TABLE record because each
element of thistableis arecord.

Syntax:
tabl e(index).field
Example:
dept _tabl e(15).location_id := 1700;
LOCATI ON_I Drepresentsafield in DEPT_TABLE.

Note: Y ou can use the “ROWT YPE attribute to declare a record that represents arow in a database
table. The difference between the ¥6R0W YPE attribute and the composite data type RECORD is that
RECORD allows you to specify the datatypes of fieldsin the record or to declare fields of your own.

Oracle9i: PL/SQL Fundamentals 5-18

Example of | NDEX BY Table of Records

SET SERVEROUTPUT ON
DECLARE
TYPE enp_table _type is table of
enpl oyees%ROMYPE | NDEX BY Bl NARY_| NTEGER;

nmy_enp_table enp_table type;

v_count NUVBER(3) : = 104;
BEG N

FOR i IN 100..v_count

LOOP

SELECT * INTO ny_enp_tabl e(i) FROM enpl oyees
VWHERE enpl oyee_id = i;

END LOCP;
FOR i IN my_enp_table.FIRST..ny enp_table. LAST
LOCP
DBVS_QUTPUT. PUT_LI NE(ny_enp_tabl e(i) .l ast_nane);
END LOCP;
END;
5-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Example | NDEX BY Table of Records

The example onthe slide declaresal NDEX BY table of recordsenp_t abl e_t ype to temporarily
store the details of the employees whose EMPLOYEE | D lies between 100 and 104. Using aloop, the
information of the employees from the EMPLOYEES table is retrieved and stored in the | NDEX BY
table. Another loop is used to print the information regarding the last names from the | NDEX BY
table. Observe the use of the FI RST and LAST methods in the example.

Oracle9i: PL/SQL Fundamentals 5-19

Summary

In this lesson, you should have learned how to:

* Define and reference PL/SQL variables of
composite data types:

— PL/SQL records
— | NDEX BY tables
— | NDEX BY table of records

®* Define a PL/SQL record by using the YROM YPE
attribute

5-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A PL/SQL record is acollection of individual fields that represent arow in atable. By using records
you can group the data into one structure and then manipulate this structure as one entity or logical
unit. This helps reduce coding, and keeps the code easier to maintain and understand.

Like PL/SQL records, the table is another composite datatype. | NDEX BY tables are objects of a
TABLE type and look smilar to database tables but with a dight difference. | NDEX BY tablesusea
primary key to give you array-like accessto rows. The size of al NDEX BY table is unconstrained.

| NDEX BY tables can have one column and a primary key, neither of which can be named. The
column can have any datatype, but the primary key must be of the Bl NARY _| NTECGER type.

A 1 NDEX BY table of records enhances the functionality of | NDEX BY tables, because only one
table definition is required to hold information about all the fields.

The following collection methods help generalize code, make collections easier to use, and make your
applications easier to maintain:

EXI STS, COUNT, LI M T, FI RST and LAST, PRI OR and NEXT, TRI M, and DELETE

The ¥ROMYPE is used to declare a compound variable whose type is the same as that of arow of a
database table.

Oracle9i: PL/SQL Fundamentals 5-20

Practice 5 Overview

This practice covers the following topics:
* Declaring | NDEX BY tables

®* Processing data by using | NDEX BY tables
®* Declaring a PL/SQL record
®* Processing data by using a PL/SQL record

5-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 5 Overview
In this practice, you define, create, and use | NDEX BY tables and a PL/SQL record.

Oracle9i: PL/SQL Fundamentals 5-21

Practice 5
1. WriteaPL/SQL block to print information about a given country.
a. Declare a PL/SQL record based on the structure of the COUNTRI ES table.

b. Usethe DEFI NE command to provide the country ID. Pass the value to the PL/SQL
block through aiSQL* Plus substitution variable.

c. Use DBVB_ QUTPUT. PUT_LI NE to print selected information about the country. A
sample output is shown below.

Country Id: CA Country Mame: Canada Eeglon: 2
PLISQL procedure successfially completed.

d. Execute and test the PL/SQL block for the countries with the IDs CA, DE, UK, US.

2. Create a PL/SQL block to retrieve the name of each department from the DEPARTMENTS table
and print each department name on the screen, incorporating an | NDEX BY table. Save the code
inafilecalled p592. sql by clickingthe Save Scri pt button. Save the script witha. sql
extension.

a. Declarean | NDEX BY table, M\Y_DEPT_TABLE, to temporarily store the name of the
departments.

b. Using aloop, retrieve the name of all departments currently in the DEPARTMVENTS table
and storethemin the | NDEX BY table. Use the following table to assign the value for
DEPARTMENT _| D based on the value of the counter used in the loop.

COUNTER DEPARTMENT_I D
10
20
50
60
80
90
110

N O O B W N

c. Using another loop, retrieve the department names from the | NDEX BY table and print
them to the screen, using DBMS_OQUTPUT. PUT_LI NE. The output from the programis
shown on the next page.

Oracle9i: PL/SQL Fundamentals 5-22

Practice 5 (continued)

& drmimstration
Marketing
Shippmng
IT

males
Executive
Accounting
Lccounting
Arccountihg
Accounting
Accounting
Arccounting
Accounting
Accounting
Accounting
Accounting
Arccounting
Accounting
Accounting
Accounting
Lccounting
Arccountihg
Accounting
Accounting
Arccounting
Accounting
Accounting
PLISQL procedure successfully completed.

Oracle9i: PL/SQL Fundamentals 5-23

Practice 5 (continued)
If you have time, compl ete the following exercise.

3. Modify the block you created in practice 2 to retrieve all information about each department
from the DEPARTMENTS table and print the information to the screen, incorporating an | NDEX
BY table of records.

a. Declarean | NDEX BY table, MY_DEPT_TABLE, to temporarily store the number,
name, and location of all the departments.

b. Using aloop, retrieve all department information currently in the DEPARTMENTS table
and storeitinthel NDEX BY table. Use the following table to assign the value for
DEPARTNMENT _| D based on the value of the counter used in the loop. Exit the loop
when the counter reachesthe value 7.

COUNTER DEPARTMENT_I D
10
20
50
60
80
90
110

N O O A W N

c. Using another loop, retrieve the department information from the | NDEX BY table and
print it to the screen, using DBMS_OUTPUT. PUT_LI NE. A sample output is shown.

Departtnent Mumber: 10 Department Mame: Admmstration Manager Id: 200 Location Id: 1700
Department Mumber: 20 Department Mame: Iarketing Banager Id: 201 Location Id: 1800
Departtnent Mumber: 50 Department Mame: Shipping Ianager Id: 121 Location Id: 1500
Departrnent Mumber: 60 Department Mame: IT Manager Id: 102 Location Id: 1400
Department Mumber: B0 Department Iame: Sales Manager Id: 145 Location Id: 2200
Departtnent Mumber: 20 Department Mame: Executive IManager Id: 100 Location Id: 1700
Departrnent Mumber: 110 Department Name: Accounting Manager Id: 205 Location Id: 1700
PLAZQL procedure successfully completed.

Oracle9i: PL/SQL Fundamentals 5-24

Writing Explicit Cursors

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Distinguish between an implicit and an explicit
cursor

®* Discuss when and why to use an explicit cursor

e Use aPL/SQL record variable
* Write a cursor FORIoop

6-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn the difference between implicit and explicit cursors. Y ou also learn when and
why to use an explicit cursor. You may need to use amultiple-row SELECT statement in PL/SQL to
process many rows. To accomplish this, you declare and control explicit cursors.

Oracle9i: PL/SQL Fundamentals 6-2

About Cursors

Every SQL statement executed by the Oracle Server
has an individual cursor associated with it:

* Implicit cursors: Declared for all DML and PL/SQL
SELECT statements

* Explicit cursors: Declared and named by the
programmer

6-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit and Explicit Cursors

The Oracle server uses work areas, called private SQL areas, to execute SQL statements and to store
processing information. Y ou can use PL/SQL cursorsto name a private SQL area and accessits stored
information.

Cursor Type Description

Implicit Implicit cursors are declared by PL/SQL implicitly
for all DML and PL/SQL SELECT statements,
including queries that return only one row.
Explicit For queries that return more than one row, explicit
cursors are declared and named by the programmer
and manipulated through specific statementsin the
block’ s executable actions.

The Oracle server implicitly opens a cursor to process each SQL statement not associated with an
explicitly declared cursor. PL/SQL allows you to refer to the most recent implicit cursor as the SQL
Cursor.

Oracle9i: PL/SQL Fundamentals 6-3

Explicit Cursor Functions
Table

100 Ki ng AD_PRES
101 Kochhar AD VP
102 De Haan AD VP

Active set

Cursor S

139 Seo ST_CLERK
140 Patel ST_CLERK

6-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors
Use explicit cursorsto individually process each row returned by a multiple-row SELECT statement.

The set of rows returned by a multiple-row query is called the active set. Its size is the number of rows
that meet your search criteria. The diagram on the dide shows how an explicit cursor “points’ to the
current row in the active set. This allows your program to process the rows one a atime.

A PL/SQL program opens a cursor, processes rows returned by a query, and then closes the cursor.
The cursor marks the current position in the active set.

Explicit cursor functions:
» Can process beyond the first row returned by the query, row by row
o Keep track of which row is currently being processed
* Allow the programmer to manually control explicit cursorsin the PL/SQL block

Oracle9i: PL/SQL Fundamentals 6-4

Controlling Explicit Cursors

‘No

e e

DECLARE > OPEN >& FETCH™S —<_EMPTY? >R CLCSE
* Createa ¢ Ildentify * Load the * Test for * Release
named the active current existing the active
SQL area set row into rows set
variables e Return to
FETCHIf
rows are
found
6-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors (continued)

Now that you have a conceptua understanding of cursors, review the steps to use them. The syntax for
each step can be found on the following pages.

Controlling Explicit Cursors
1. Declarethe cursor by naming it and defining the structure of the query to be performed
within it.
2. Open the cursor. The OPEN statement executes the query and binds any variables that are

referenced. Rows identified by the query are called the active set and are now available for
fetching.

3. Fetch datafrom the cursor. In the flow diagram shown on the slide, after each fetch you test the
cursor for any existing row. If there are no more rows to process, then you must close the cursor.

4. Closethe cursor. The CLOSE statement rel eases the active set of rows. It is now possibleto
reopen the cursor to establish afresh active set.

Oracle9i: PL/SQL Fundamentals 6-5

1. Open the cursor

Controlling Explicit Cursors
2. Fetch arow

3. Close the Cursor

1. Open the cursor.

€ CUI‘SOI‘
e .
— pointer
=

6-6

Copyright © Oracle Corporation, 2001. All rights reserved.
Explicit Cursors (continued)

positions the cursor before the first row.

Y ou use the OPEN, FETCH, and CLCSE statements to control a cursor.

The OPEN statement executes the query associated with the cursor, identifies the result set, and

Oracle9i: PL/SQL Fundamentals 6-6

Controlling Explicit Cursors

1. Open the cursor
2. Fetch arow
3. Close the Cursor

2. Fetch arow using the cursor.

]
— Cursor
(] .
— pointer
Continue until empty.
6-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors (continued)

The FETCH statement retrieves the current row and advances the cursor to the next row until either
there are no more rows or until the specified condition is met.

Oracle9i: PL/SQL Fundamentals 6-7

Controlling Explicit Cursors

1. Open the cursor
2. Fetch arow
3. Close the Cursor

3. Close the cursor.

_
Cursor
pointer
6-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors (continued)
Close the cursor when the last row has been processed. The CLOSE statement disabl es the cursor.

Oracle9i: PL/SQL Fundamentals 6-8

Declaring the Cursor

Syntax:

CURSCOR cursor_nane |S
sel ect _st at enent;

* Do notinclude the | NTOclause in the cursor
declaration.

* |If processing rows in a specific sequence is
required, use the ORDER BY clause in the query.

6-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring the Cursor

Use the CURSOR statement to declare an explicit cursor. Y ou can reference variables within the query,
but you must declare them before the CURSOR statement.

In the syntax:
Cursor_name isaPL/SQL identifier.
select statement isa SELECT statement without an | NTO clause.
Note
» Do notincludethe | NTOclause in the cursor declaration because it appears later in the FETCH
statement.

» Thecursor can be any valid ANSI SELECT statement, to include joins, and so on.

Oracle9i: PL/SQL Fundamentals 6-9

Declaring the Cursor

Example:

DECLARE
CURSOR enp_cursor 1S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;

CURSOR dept _cursor 1S
SELECT *
FROM departnents
VWHERE | ocation_id = 170;
BEG N

6-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring the Cursor (continued)

In the example on the dide, the cursor enp_cur sor isdeclared to retrieve the EMPLOYEE | Dand
LAST_NAME columns from the EMPLOYEES table. Similarly, the cursor DEPT _CURSORis declared
to retrieve al the details for the department with the LOCATI ON_I D 170.

DECLARE
vV_enpno enpl oyees. enpl oyee_i d%'YPE;
vV_enamne enpl oyees. | ast _nane%l YPE;

CURSOR enp_cursor | S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
BEG N

Fetching the values retrieved by the cursor into the variables declared in the DECLARE section is
covered later in thislesson.

Oracle9i: PL/SQL Fundamentals 6-10

Opening the Cursor

Syntax:

OPEN cursor _nane;

®* Open the cursor to execute the query and identify
the active set.

* If the query returns no rows, no exception is

raised.
®* Use cursor attributes to test the outcome after a
fetch.
6-11 Copyright © Oracle Corporation, 2001. All rights reserved.
OPEN Statement

The OPEN statement executes the query associated with the cursor, identifies the result set, and
positions the cursor before the first row.

In the syntax:
cursor_name isthe name of the previously declared cursor.
OPEN is an executable statement that performs the following operations:

1. Dynamically alocates memory for a context areathat eventually contains crucial processing
information.

2. Parsesthe SELECT statement.

3. Bindstheinput variables—sets the value for the input variables by obtaining their memory
addresses.

4. ldentifies the active set—the set of rows that satisfy the search criteria. Rows in the active set are
not retrieved into variables when the OPEN statement is executed. Rather, the FETCH statement
retrievesthe rows.

5. Positionsthe pointer just before the first row in the active set.

For cursors declared using the FOR UPDATE clause, the OPEN statement also locks those rows. The
FOR UPDATE clauseis discussed in alater lesson.

Note: If the query returns no rows when the cursor is opened, PL/SQL does not raise an exception.
However, you can test the status of the cursor after afetch using the SQLYRONCOUNT cursor attribute.

Oracle9i: PL/SQL Fundamentals 6-11

Fetching Data from the Cursor

Syntax:

FETCH cursor_name |INTO [variabl el, variable2, ...]
| record_nane];

* Retrieve the current row values into variables.
* Include the same number of variables.

e Match each variable to correspond to the columns
positionally.

* Test to see whether the cursor contains rows.

6-12 Copyright © Oracle Corporation, 2001. All rights reserved.

FETCH Statement

The FETCH statement retrieves the rows in the active set one at atime. After each fetch, the cursor
advances to the next row in the active set.

In the syntax:
Cursor_name is the name of the previoudly declared cursor.
variable is an output variable to store the results.
record_name is the name of the record in which the retrieved datais stored. (The
record variable can be declared using the “RONT YPE attribute.)
Guidelines:

e Include the same number of variablesin the | NTOclause of the FETCH statement as columnsin
the SELECT statement, and be sure that the data types are compatible.

» Match each variable to correspond to the columns positionally.

» Alternatively, define arecord for the cursor and reference the record inthe FETCH | NTO
clause.

» Test to see whether the cursor contains rows. If afetch acquires no values, there are no rows left
to processin the active set and no error is recorded.

Note: The FETCH statement performs the following operations:
1. Readsthe datafor the current row into the output PL/SQL variables.
2. Advances the pointer to the next row in the identified set.

Oracle9i: PL/SQL Fundamentals 6-12

Fetching Data from the Cursor

Example:

LOOP
FETCH enp_cursor | NTO v_enpno, v_enane;
EXIT WHEN .. .;
-- Process the retrieved data

END LOOP;

6-13 Copyright © Oracle Corporation, 2001. All rights reserved.

FETCH Statement (continued)

You usethe FETCH statement to retrieve the current row values into output variables. After the fetch,
you can manipulate the data in the variables. For each column value returned by the query associated
with the cursor, there must be a corresponding variable in the | NTOlist. Also, their data types must be
compatible.
Retrieve the first 10 employees one by one.
SET SERVEROUTPUT ON
DECLARE
v_enpno enpl oyees. enpl oyee_i d%I'YPE;
v_enane enpl oyees. | ast_nane%l YPE;
CURSCR enp_cursor IS
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
BEG N
OPEN enp_cursor,
FORi IN1..10 LOOP
FETCH enp_cursor | NTO v_enpno, v_enane;

DBVS_OUTPUT. PUT_LI NE (TO_CHAR(V_enpno)
[l 1l v_enane);

END LOOP;
END ;

Oracle9i: PL/SQL Fundamentals 6-13

Closing the Cursor

Syntax:

CLOSE cur sor _nane,

®* Close the cursor after completing the processing
of the rows.

®* Reopen the cursor, if required.

®* Do not attempt to fetch data from a cursor after it
has been closed.

6-14 Copyright © Oracle Corporation, 2001. All rights reserved.

CLCSE Statement

The CLOSE statement disables the cursor, and the active set becomes undefined. Close the cursor after
completing the processing of the SELECT statement. This step allows the cursor to be reopened, if
required. Therefore, you can establish an active set severd times.

In the syntax:
cursor_name is the name of the previously declared cursor.

Do not attempt to fetch data from a cursor after it has been closed, or the | NVALI D_CURSOR
exception will be raised.

Note: The CLOSE statement releases the context area.

Although it is possible to terminate the PL/SQL block without closing cursors, you should make it a
habit to close any cursor that you declare explicitly to free up resources.

Thereis amaximum limit to the number of open cursors per user, which is determined by the
OPEN_CURSORS parameter in the database parameter file. OPEN_CURSORS = 50 by defaullt.

OPEN enp_cur sor
FORi IN1..10 LOOP
FETCH enp_cursor | NTO v_enpno, v_enang;

END LOOP;
CLOSE enp_cursor;
END;

Oracle9i: PL/SQL Fundamentals 6-14

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Type Description

%9 SOPEN Boolean | Evaluates to TRUE if the cursor
IS open

ONOTFOUND Boolean Evaluates to TRUE if the most
recent fetch does not return a row

94-OUND Boolean | Evaluates to TRUE if the most
recent fetch returns a row;
complement of ¥NOTFOUND

OROVWNCOUNT Number Evaluates to the total number of
rows returned so far

6-15

Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursor Attributes

Aswith implicit cursors, there are four attributes for obtaining status information about a cursor. When
appended to the cursor variable name, these attributes return useful information about the execution of

a data manipulation statement.
Note: Y ou cannot reference cursor attributes directly in a SQL statement.

Oracle9i: PL/SQL Fundamentals 6-15

The % SOPEN Attribute

®* Fetch rows only when the cursor is open.

® Usethe 9% SOPEN cursor attribute before

performing a fetch to test whether the cursor is
open.

Example:

I F NOT enp_cursor % SOPEN THEN
OPEN enp_cursor,
END | F;
LOOP
FETCH enp_cursor. ..

6-16 Copyright © Oracle Corporation, 2001. All rights reserved.

The % SOPEN Attribute

» You can fetch rows only when the cursor is open. Use the %4 SOPEN cursor attribute to
determine whether the cursor is open.

» Fetchrowsinaloop. Use cursor attributes to determine when to exit the loop.
» Usethe “ROWCOUNT cursor attribute for the following:
— Toretrieve an exact number of rows
— Fetch the rowsin anumeric FOR loop
— Fetch the rowsin asimple loop and determine when to exit the loop.
Note: 9% SOPEN returns the status of the cursor: TRUE if open and FALSE if not.

Oracle9i: PL/SQL Fundamentals 6-16

Controlling Multiple Fetches

®* Process several rows from an explicit cursor using
a loop.

* Fetch arow with each iteration.

* Use explicit cursor attributes to test the success
of each fetch.

6-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Multiple Fetches from Explicit Cursors

To process several rows from an explicit cursor, you typically define aloop to perform afetch on each
iteration. Eventualy all rows in the active set are processed, and an unsuccessful fetch setsthe
9NOTFOUND attribute to TRUE. Use the explicit cursor attributes to test the success of each fetch
before any further references are made to the cursor. If you omit an exit criterion, an infinite loop
results.

For more information, see PL/SQL User’s Guide and Reference, “ Interaction With Oracle.”

Oracle9i: PL/SQL Fundamentals 6-17

The YNOTFOUND
and YRONCOUNT Attributes

* Use the %ROWCOUNT cursor attribute to retrieve an
exact number of rows.

* Use the Y9NOTFOUND cursor attribute to determine
when to exit the loop.

6-18 Copyright © Oracle Corporation, 2001. All rights reserved.

The YNOTFOUND and %RONCOUNT Attributes
YNOTFOUND

UNOTFOUND is the logical opposite of %-OUND. ¥NOTFOUND yields FALSE if the last fetch returned a
row, or TRUE if the last fetch failed to return arow. In the following example, you use ¥NOTFOUND to
exit aloop when FETCH failsto return arow:

LOOP
FETCH c1 I NTO ny_enane, ny_sal, ny_hiredate;
EXIT WHEN c19%NOTFOUND;

END LOOP,

Before the first fetch, 90NOTFOUND evaluatesto NULL. So, if FETCH never executes successfully, the
loop is never exited. That isbecausethe EXI T WHEN statement executes only if its WHEN condition is
true. To be safe, use the following EXI T statement instead:

EXIT WHEN c1%0NOTFOUND OR cl19%MNOTFOUND |'S NULL;
If acursor is not open, referencing it with YINOTFOUND raises | NVALI D_CURSOR.

Oracle9i: PL/SQL Fundamentals 6-18

The YNOTFOUND and %RONCOUNT Attributes (continued)
YBROWCOUNT

When its cursor or cursor variableis opened, “RONCOUNT is zeroed. Before the first fetch,
URONCOUNT yields 0. Thereafter, it yields the number of rows fetched so far. The number is
incremented if the last fetch returned arow. In the next example, you use “RONCOUNT to take action
if more than ten rows have been fetched:

LOOP
FETCH c1 I NTO ny_enane, ny_deptno;
| F c1%RONCOUNT > 10 THEN
END | F;
END LOOP;
If acursor is not open, referencing it with “RONCOUNT raises | NVALI D_CURSOR.

Oracle9i: PL/SQL Fundamentals 6-19

Example

DECLARE

v_enpno enpl oyees. enpl oyee_i d%'YPE;

v_enane enpl oyees. | ast _nane%l YPE;

CURSOR enp_cursor 1S
SELECT enpl oyee_id, |ast_name
FROM enpl oyees;

BEG N

OPEN enp_cursor;

LOOP
FETCH enp_cursor | NTO v_enpno, v_enane;
EXI'T WHEN enp_cur sor “RONCOUNT > 10 OR

enp_cur sor ¥NOTFOUND;

DBVS_QUTPUT. PUT_LI NE (TO_CHAR(v_enpno)

[1” || v_enane);
END LOCP;
CLOSE enp_cursor;
END ;
6-20 Copyright © Oracle Corporation, 2001. All rights reserved.
Example

The example on the dide retrieves the first ten employees one by one.

Note: Before the first fetch, YINOTFOUND evauatesto NULL. So if FETCH never executes
successfully, the loop is never exited. That is becausethe EXI T WHEN statement executes only if its
VHEN condition istrue. To be safe, usethe following EXI T statement:

EXIT WHEN enp_cur sor YNOTFOUND OR enp_cur sor ¥“INOTFOUND | S NULL,;

If using RONCOUNT, add atest for no rowsin the cursor by using the %NOTFOUND attribute, because
the row count is not incremented if the fetch does not retrieve any rows.

Oracle9i: PL/SQL Fundamentals 6-20

Cursors and Records

Process the rows of the active set by fetching values
into a PL/SQL RECORD.

DECLARE
CURSOR enp_cursor |S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
enp_record enp_cursor YROMYPE;
BEG N

OPEN enp_cursor;
LOOP

FETCH enp_cursor | NTO enp_record;

enp_record

enpl oyee_id | ast _nane
100 Ki ng
6-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors and Records

Y ou have aready seen that you can define records that have the structure of columnsin atable. You
can also define arecord based on the selected list of columns in an explicit cursor. Thisis convenient
for processing the rows of the active set, because you can simply fetch into the record. Therefore, the
values of the row are loaded directly into the corresponding fields of the record.

Example

Use a cursor to retrieve employee numbers and names and populate a database table, TEMP_LI ST,
with thisinformation.

DECLARE
CURSOR enp_cursor |S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
enp_record enp_cur sor ¥RONYPE;
BEG N
OPEN enp_cursor,
LOOP
FETCH enp_cursor | NTO enp_record;
EXIT WHEN enp_cur sor “NOTFOUND,
I NSERT INTO tenmp_list (enpid, enpnane)
VALUES (enp_record. enpl oyee_id, enp_record.|ast_nane);
END LOOP;
COW T;
CLOSE enp_cursor;
END;
/

Oracle9i: PL/SQL Fundamentals 6-21

Cursor FOR Loops

Syntax:

FOR record_name I N cursor_name LOOP
st at enent 1;
st at enent 2,

END LOOP;

®* The cursor FORIloop is a shortcut to process
explicit cursors.

* Implicit open, fetch, exit, and close occur.
* Therecord is implicitly declared.

6-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor FORLoops

A cursor FOR loop processes rows in an explicit cursor. It is a shortcut because the cursor is opened,
rows are fetched once for each iteration in the loop, the loop exits when the last row is processed, and

the cursor is closed automatically. The loop itself isterminated automatically at the end of the iteration
where the last row is fetched.

In the syntax:
record_name is the name of the implicitly declared record.
cursor_name isaPL/SQL identifier for the previoudy declared cursor.
Guidelines

» Do not declare the record that controls the loop because it is declared implicitly.
» Test the cursor attributes during the loop, if required.

» Supply the parametersfor acursor, if required, in parentheses following the cursor namein the
FOR statement. More information on cursor parametersis covered in a subsequent lesson.

» Do not use a cursor FOR loop when the cursor operations must be handled explicitly.

Note: Y ou can define a query at the start of the loop itself. The query expression is called a SELECT
substatement, and the cursor isinternal to the FOR loop. Because the cursor is not declared with a
name, you cannot test its attributes.

Oracle9i: PL/SQL Fundamentals 6-22

Cursor FOR Loops

Print a list of the employees who work for the sales
department.

DECLARE
CURSOR enp_cursor 1S
SELECT | ast _nane, departnent id
FROM enpl oyees;
BEG N
FOR enp_record I N enp_cursor LOOP
-- inmplicit open and inplicit fetch occur
| F enp_record. departnent _id = 80 THEN

END LOOP; -- inplicit close occurs
END;
/

6-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

Retrieve employees one by one and print out alist of those employees currently working in the sales
department (DEPARTMVENT _| D = 80). The example from the dide is completed below.
SET SERVEROUTPUT ON
DECLARE
CURSCR enmp_cursor IS
SELECT | ast _name, department _id
FROM enpl oyees;
BEG N
FOR enp_record IN enp_cursor LOOP
--inplicit open and inplicit fetch occur
| F emp_record. departnment _id = 80 THEN
DBMS_OUTPUT. PUT_LI NE (' Enpl oyee * || enp_record. | ast_nane
|| * works in the Sales Dept. ');
END | F;
END LQOOP; --inmplicit close and inplicit |oop exit
END ;
/

Oracle9i: PL/SQL Fundamentals 6-23

Cursor FOR Loops Using Subqueries

No need to declare the cursor.
Example:

BEG N
FOR enp_record IN (SELECT | ast_nane, departnent _id
FROM enpl oyees) LOOP
-- inmplicit open and inplicit fetch occur
| F enp_record. departnent _id = 80 THEN

END LOOP; -- inplicit close occurs
END,;

6-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor FORLoops Using Subqueries
When you use a subquery in a FOR loop, you do not need to declare a cursor. This example does the
same thing as the one on the previous page. The complete codeis given below:
SET SERVEROUTPUT ON
BEG N
FOR enmp_record I N (SELECT | ast _name, departnent _id
FROM enpl oyees) LOOP
--inplicit open and inplicit fetch occur
| F enp_record. departnent _id = 80 THEN
DBVS_QUTPUT. PUT_LI NE (' Enpl oyee * || enp_record. | ast_name
|| * works in the Sales Dept. ');
END | F;
END LOOP; --inplicit close occurs
END ;
/

Oracle9i: PL/SQL Fundamentals 6-24

Example
Retrieve the first five employees with ajob history.
SET SERVEROUTPUT ON

DECLARE
v_enpl oyee_id enpl oyees. enpl oyee_i dWYPE;
v_job_id enpl oyees. j ob_i dWI'YPE;
v_start _date DATE;
v_end_date DATE;
CURSOR emp_cursor | S
SELECT enpl oyee _id, job_id, start_date, end date

FROM job_history
ORDER BY enpl oyee i d;
BEG N
OPEN enp_cur sor;
LOCP
FETCH enp_cursor
I NTO v_enpl oyee_id, v_job_id, v_start_date, v_end_date;

DBVMS_OUTPUT. PUT_LINE (' Enpl oyee #: ' || v_enployee_id ||
" held the job of * || v_job_id || ' FROM’ ||
v_start _date || * TO' || v_end date);

EXI'T WHEN enp_cur sor “RONMCOUNT > 4 OR
enp_cur sor YANOTFOUND;
END LOOP;
CLOSE enp_cursor;
END;
/

Oracle9i: PL/SQL Fundamentals 6-25

Summary

In this lesson you should have learned how to:

Distinguish cursor types:

— Implicit cursors: used for all DML statements and
single-row queries

— Explicit cursors: used for queries of zero, one, or
more rows

* Manipulate explicit cursors

* Evaluate the cursor status by using cursor
attributes

®* Use cursor FORloops

6-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Oracle uses work areas to execute SQL statements and store processing information. A PL/SQL
construct called a cursor alows you to name awork area and access its stored information. There are
two kinds of cursors: implicit and explicit. PL/SQL implicitly declares a cursor for all SQL data
manipulation statements, including queries that return only one row. For queries that return more than
one row, you can explicitly declare a cursor to process the rowsindividualy.

Every explicit cursor and cursor variable has four attributes: %6-OQUND, % SOPEN %8NOTFOUND, and
YROWCOUNT. When appended to the cursor or cursor variable, these attributes return useful
information about the execution of a data manipulation statement. Y ou can use cursor attributesin
procedura statements but not in SQL statements.

Oracle9i: PL/SQL Fundamentals 6-26

Practice 6 Overview

This practice covers the following topics:

* Declaring and using explicit cursors to query rows
of atable

®* Using acursor FORIloop
* Applying cursor attributes to test the cursor status

6-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 6 Overview

This practice applies your knowledge of cursorsto process a number of rows from atable and populate
another table with the results using a cursor FOR loop.

Oracle9i: PL/SQL Fundamentals 6-27

Practice 6
1. Runthe command inthescript| ab06_1. sql to create anew table for storing the salaries of

the employees.
CREATE TABLE t op_dogs
(salary NUMBER(8, 2)) ;

2. Create a PL/SQL block that determines the top employees with respect to salaries.

a. Accept anumber n from the user where n represents the number of top n earners from the
EMPLOYEES table. For example, to view the top five earners, enter 5.

Note: Use the DEFI NE command to provide the value for n. Pass the value to the
PL/SQL block through aiSQL*Plus substitution variable.

b. Inaloop use theiSQL*Plus substitution parameter created in step 1 and gather the
salaries of the top n people from the EMPLOYEES table. There should be no duplication
in the salaries. If two employees earn the same saary, the salary should be picked up
only once.

c. Storethe saariesin the TOP_DOGS table.

d. Test avariety of specia cases, such asn =0 or where nis greater than the number
of employeesin the EMPLOYEES table. Empty the TOP_DOGS table after each test. The
output shown represents the five highest salaries in the EMPLOYEES table.

SALARY

|

| 24000
| 17000
|
|
|

14000
13500
13000

3. Create a PL/SQL block that does the following:

a. Usethe DEFI NE command to provide the department ID. Pass the value to the PL/SQL
block through a i SQL* Plus substitution variable.

b. InaPL/SQL block, retrieve the last name, salary, and MANAGER | D of the employees
working in that department.

c. If the saary of the employeeislessthan 5000 and if the manager 1D is either 101 or 124,
display the message <<| ast _nanme>> Due f or ar ai se. Otherwise, display the
message <<| ast _nanme>> Not due for arai se.

Note: SET ECHO COFF to avoid displaying the PL/SQL code every time you execute the script.

Oracle9i: PL/SQL Fundamentals 6-28

Practice 6 (continued)

d. Test the PL/SQL block for the following cases:

Department 1D

Message

10

Wial en Due for a raise

20

Hartstein Not Due for a raise
Fay Not Due for a raise

50

Wi ss Not Due for a raise
Fripp Due for a raise
Kaufling Due for a raise
Vol | man Due for a raise
Mourgas Due for a raise

Russel Not Due for a raise

Partners Not Due for a raise
Errazuriz Not Due for a raise
Canbrault Not Due for a raise

Oracle9i: PL/SQL Fundamentals 6-29

Oracle9i: PL/SQL Fundamentals 6-30

Advanced Explicit Cursor
Concepts

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Write a cursor that uses parameters

* Determine when a FOR UPDATE clause in a cursor
Is required

* Determine when to use the WHERE CURRENT OF
clause

* Write a cursor that uses a subquery

7-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn more about writing explicit cursors, specifically about writing cursors that use
parameters.

Oracle9i: PL/SQL Fundamentals 7-2

Cursors with Parameters

Syntax:

CURSOR cur sor _nane

[(paramet er _nane datatype, ...)]
IS

sel ect _statenent;

®* Pass parameter values to a cursor when the cursor
IS opened and the query is executed.

®* Open an explicit cursor several times with a
different active set each time.

OPEN cursor _nane(paraneter _val ue,)

7-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Parameters

Y ou can pass parameters to the cursor in a cursor FOR loop. This means that you can open and close
an explicit cursor several timesin ablock, returning a different active set on each occasion. For each
execution, the previous cursor is closed and re-opened with a new set of parameters.

Each formal parameter in the cursor declaration must have a corresponding actual parameter in the
OPEN statement. Parameter data types are the same as those for scalar variables, but you do not give
them sizes. The parameter names are for references in the query expression of the cursor.

In the syntax:
Cursor_name isaPL/SQL identifier for the previously declared cursor.
parameter _name is the name of a parameter.

par anet er _nane
datatype isascalar datatype of the parameter.
select_statement isa SELECT statement without the | NTOclause.

When the cursor is opened, you pass values to each of the parameters by position or by name. Y ou can
pass values from PL/SQL or host variables as well as from literals.

Note: The parameter notation does not offer greater functionality; it smply allows you to specify input
values easily and clearly. Thisis particularly useful when the same cursor is referenced repeatedly.

Oracle9i: PL/SQL Fundamentals 7-3

Cursors with Parameters

Pass the department number and job title to the WHERE
clause, in the cursor SELECT statement.

DECLARE

CURSOR enp_cur sor
(p_deptno NUMBER, p_job VARCHAR2) IS

SELECT enpl oyee_id, |ast_name
FROM enpl oyees
WHERE departnent _id = p_deptno
AND job_id = p_job;
BEG N
OPEN enp_cursor (80, 'SA REP);

CLOSE enp_cur sor;
OPEN enp_cursor (60, '"IT_PROG);

END;

7-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Parameter

Parameter data types are the same as those for scalar variables, but you do not give them sizes. The
parameter names are for referencesin the cursor’ s query. In the following example, a cursor is
declared and is defined with two parameters.

DECLARE
CURSOR enp_cursor (p_deptno NUMBER, p_job VARCHAR2) IS
SELECT ...
The following statements open the cursor and returns different active sets:
OPEN enp_cursor (60, v_enp_job);
OPEN enp_cursor (90, 'AD VP);
Y ou can pass parameters to the cursor used in a cursor FOR loop:
DECLARE
CURSCOR enp_cursor(p_deptno NUMBER, p_job VARCHAR2) IS
SELECT ...

BEG N
FOR enp_record IN enp_cursor (50, 'ST_CLERK) LOOP ...

Oracle9i: PL/SQL Fundamentals 7-4

The FOR UPDATE Clause

Syntax:

SELECT . ..
FROM -
FOR UPDATE [OF col um_ref erence] [NOMI T] ;

® Use explicit locking to deny access for the
duration of a transaction.

®* Lock therows before the update or delete.

7-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOR UPDATE Clause

Y ou may want to lock rows before you update or delete rows. Add the FOR UPDATE clausein the
cursor query to lock the affected rows when the cursor is opened. Because the Oracle Server rel eases
locks at the end of the transaction, you should not commit across fetches from an explicit cursor if
FOR UPDATE is used.

In the syntax:
column_reference isacolumn in the table against which the query is performed. (A
list of columns may also be used.)
NOMI T returns an Oracle error if the rows are locked by another session

The FOR UPDATE clauseisthelast clause in a sdlect statement, even after the ORDER BY, if one
exists. When querying multiple tables, you can use the FOR UPDATE clause to confine row locking to
particular tables. Rowsin atable are locked only if the FOR UPDATE clause refersto a column in that
table. FOR UPDATE OF col _nane(s) locksrowsonly intablesthat contain the

col _name(s).

The SELECT ... FOR UPDATE statement identifies the rows that will be updated or deleted, then
locks each row in the result set. Thisis useful when you want to base an update on the existing values
inarow. Inthat case, you must make sure the row is not changed by another user before the update.

The optional NOWAI T keyword tells Oracle not to wait if requested rows have been locked by another
user. Control isimmediately returned to your program so that it can do other work before trying again
to acquire the lock. If you omit the NOMI T keyword , Oracle waits until the rows are available.

Oracle9i: PL/SQL Fundamentals 7-5

The FOR UPDATE Clause

Retrieve the employees who work in department 80
and update their salary.

DECLARE
CURSOR enp_cursor |S
SELECT enpl oyee_id, |ast_nane, departnent_nane
FROM enpl oyees, depart nent s
WHERE enpl oyees. departnent _id =
departnents. departnent _id
AND enpl oyees. departnent _id = 80
FOR UPDATE OF sal ary NOWMAIT;

7-6 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOR UPDATE Clause (continued)

Note: If the Oracle server cannot acquire the locks on the rows it needsin a SELECT FOR UPDATE,
it waitsindefinitdly. Y ou can use the NOMAI T clausein the SELECT FOR UPDATE statement and
test for the error code that returns because of failure to acquire the locks in aloop. You can retry
opening the cursor n times before terminating the PL/SQL block. If you have alarge table, you can
achieve better performance by using the LOCK TABLE statement to lock al rowsin the table.
However, when using LOCK TABLE, you cannot use the WHERE CURRENT COF clause and must use
the notation WHERE col um = identifier.

It isnot mandatory that the FOR UPDATE OF clauserefer to a column, but it is recommended for
better readability and maintenance.

Note: The WHERE CURRENT OF clauseis explained later in this lesson.

The FOR UPDATE clause identifies the rows that will be updated or deleted, then locks each row in
the result set. Thisis useful when you want to base an update on the existing valuesin arow. In that
case, you must make sure the row is not changed by another user before the update.

Oracle9i: PL/SQL Fundamentals 7-6

The WHERE CURRENT OF Clause

Syntax:

WHERE CURRENT OF cursor

® Use cursors to update or delete the current row.

* Include the FOR UPDATE clause in the cursor
qguery to lock the rows first.

* Usethe WHERE CURRENT OF clause to reference
the current row from an explicit cursor.

7-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The WHERE CURRENT OF Clause

When referencing the current row from an explicit cursor, usethe WHERE CURRENT OF clause.

This dlows you to apply updates and del etes to the row currently being addressed, without the need to
explicitly reference the ROW D. Y ou must include the FOR UPDATE clause in the cursor query so that
the rows are locked on OPEN.

In the syntax:

cursor isthe name of a declared cursor. (The cursor must have been
declared with the FOR UPDATE clause.)

Oracle9i: PL/SQL Fundamentals 7-7

The WHERE CURRENT OF Clause

DECLARE
CURSOR sal _cursor IS

FROM enpl oyees e, departnents d
WHERE d. departnent _id = e.departnent _id
and d. departnent _id = 60
FOR UPDATE OF sal ary NOMIT;
BEG N
FOR enp_record I N sal _cursor
LOOP
| F enp_record.salary < 5000 THEN
UPDATE enpl oyees
SET salary = enp_record.salary * 1.10
WHERE CURRENT OF sal cursor;

SELECT e. departnent _id, enployee id, |ast_nanme, salary

END I F;
END LOCP;
END;
/
7-8 Copyright © Oracle Corporation, 2001. All rights reserved.

The WHERE CURRENT OF Clause (continued)
Example

The dide exampl e loops through each employee in department 60, and checks whether the salary is
less than 5000. If the salary isless than 5000, the salary israised by 10%. The WHERE CURRENT OF
clausein the UPDATE statement refersto the currently fetched record. Observe that atable can be
updated with the WHERE CURRENT OF clause, even if thereisajoin in the cursor declaration.

Additionally, you can write a DELETE or UPDATE statement to contain the WHERE CURRENT OF
cursor_name clause to refer to the latest row processed by the FETCH statement. Y ou can update rows
based on criteriafrom a cursor. When you use this clause, the cursor you reference must exist and
must containthe FOR UPDATE clausein the cursor query; otherwise, you will receive an error. This
clause alows you to apply updates and deletes to the currently addressed row without the need to

explicitly reference the ROW D pseudo column.

Oracle9i: PL/SQL Fundamentals 7-8

Cursors with Subqueries

Example:

DECLARE
CURSOR ny_cursor |S
SELECT t1.departnent _id, tl.departnent_nane,
t2.staff
FROM departnments t1, (SELECT departnent _id,
COUNT(*) AS STAFF

FROM enpl oyees
GROUP BY departnent _id) t2

WHERE t 1. departnent _id = t2. departnent __id

AND t2.staff >= 3;

7-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Subqueries

A subguery is a query (usually enclosed by parentheses) that appears within another SQL data

mani pulation statement. When eva uated, the subquery provides avalue or set of valuesto the outer
query. Subqueries are often used in the WHERE clause of a select statement. They can also be used in
the FROMclause, creating atemporary data source for that query.

In this example, the subquery creates a data source consisting of department numbers and employee
head count in each department (known asthe alias STAFF. A table dlias, t 2, refersto thistemporary
data source in the FROMclause. When this cursor is opened, the active set will contain the department
number, department name, and total number of employees working for the department, provided there
are three or more employees working for the department.

Oracle9i: PL/SQL Fundamentals 7-9

Summary

In this lesson, you should have learned how to:

* Return different active sets using cursors with
parameters.

* Define cursors with subqueries and correlated
subqueries.

* Manipulate explicit cursors with commands using
the:

— FOR UPDATE clause
— VWHERE CURRENT OF clause

7-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

An explicit cursor can take parameters. In a query, you can specify a cursor parameter wherever a
constant appears. An advantage of using parametersis that you can decide the active set at run time.

PL/SQL provides a method to modify the rows that have been retrieved by the cursor. The method
consists of two parts. The FOR UPDATE clause in the cursor declaration and the WHERE CURRENT
OF clausein an UPDATE or DELETE statement.

Oracle9i: PL/SQL Fundamentals 7-10

Practice 7 Overview

This practice covers the following topics:

* Declaring and using explicit cursors with
parameters

®* Using a FOR UPDATE cursor

7-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 7 Overview

This practice applies your knowledge of cursors with parameters to process a number of rows from
multiple tables.

Oracle9i: PL/SQL Fundamentals 7-11

Practice 7

1

In aloop, use a cursor to retrieve the department number and the department name from the
DEPARTNMENTS table for those departments whose DEPARTMENT _| Dislessthan 100. Passthe
department number to another cursor to retrieve from the EMPLOYEES table the detail s of
employee last name, job, hire date, and salary of those employeeswhose EMPLOYEE | Disless
than 120 and who work in that department.

Department Mumber : 10 Department Mame ; A dmumstration

Department Mumber : 20 Department Mame : Marketing

Department Mumber : 30 Department Mame : Purchasing

Eaphaely PTT_WLATT 07-DEC-24 11000
Ehoo PU_CLERE 15-BMATY-95 3100
Baida PU_CLERE 24-DEC-57 2500
Tobias PU_CLEEE 24-JUL-%7 2500
Himure PTT_CLERE 15-IJOWV-58 2600
Colmenares PUU_CLERE 10-ATG-9% 2500

Department Mumber : 40 Department Iame - Human Eesources

Depattment Mumber : 50 Department Mame © Shipping

Department Mumber : 60 Department Mame : TT

Hunold IT_PE.OG 03-TAT-20 9000
Ernst IT PROG 21-MAY-91 6000
Austin TT_FPROG 25-TUN-57 5250
Pataballa IT PROG 05-FEB-%8 5250
Lorentz IT PROG O0/-FEE-3% 4620

Departtment Mumber : 70 Department Mame : Public Eelations

Department Mumber : 50 Department Name : Sales

Department Mumber : 20 Department Name : Executrve

Emg AT PEES 17-JULN-87 24000
Eochhar ATY VP 21-5EP-8% 17000
De Haan AD_ VP 13-JAN-93 17000

PLAEOQL procedure successfilly completed.
Oracle9i: PL/SQL Fundamentals 7-12

Practice 7 (continued)
2. Modify thecodeinsol 04_4. sql toincorporate acursor using the FOR UPDATE and
WHERE CURRENT OF functionality in cursor processing.
a. Define the host variables.
DEFI NE p_enpno=104
DEFI NE p_enpno=174
DEFI NE p_enpno=176

b. Execute the modified PL/SQL block
c. Execute the following command to check if your PL/SQL block has worked successfully:
SELECT enpl oyee_id, sal ary, stars

FROM EMP
WHERE enpl oyee id IN (176, 174, 104)

| EMPLOYEE_ID | SALARY | STARS
| 104 | BOOD [~

| 174 | 11000 [

| 176 | BEO0 [+

Oracle9i: PL/SQL Fundamentals 7-13

Oracle9i: PL/SQL Fundamentals 7-14

Handling Exceptions

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Define PL/SQL exceptions

®* Recoghize unhandled exceptions

* List and use different types of PL/SQL exception
handlers

* Trap unanticipated errors

* Describe the effect of exception propagation in
nested blocks

®* Customize PL/SQL exception messages

8-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In thislesson, you learn what PL/SQL exceptions are and how to deal with them using predefined,
nonpredefined, and user-defined exception handlers.

Oracle9i: PL/SQL Fundamentals 8-2

Handling Exceptions with PL/SQL

®* An exception is an identifier in PL/SQL that is raised
during execution.

* How is itraised?
— An Oracle error occurs.
— You raise it explicitly.
* How do you handle it?
— Trap it with a handler.
— Propagate it to the calling environment.

8-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview

An exception isanidentifier in PL/SQL that israised during the execution of a block that terminates
its main body of actions. A block always terminates when PL/SQL raises an exception, but can you
specify an exception handler to perform final actions.

Two Methods for Raising an Exception

» An Oracle error occurs and the associated exception israised automatically. For example, if
the error ORA- 01403 occurs when no rows are retrieved from the database in a SELECT
statement, then PL/SQL raises the exception NO_DATA FOUND.

* You raise an exception explicitly by issuing the RAI SE statement within the block. The
exception being raised may be either user-defined or predefined.

Oracle9i: PL/SQL Fundamentals 8-3

Handling Exceptions

Trap the exception Propagate the exception
Exception Exception
is raised is raised
Exception Exception

is trapped is not
trapped
Exception

propagates to calling
environment

8-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping an Exception

If the exception israised in the executable section of the block, processing branchesto the
corresponding exception handler in the exception section of the block. If PL/SQL successfully
handles the exception, then the exception does not propagate to the enclosing block or environment.
The PL/SQL block terminates successfully.

Propagating an Exception

If the exception israised in the executable section of the block and there is no corresponding
exception handler, the PL/SQL block terminates with failure and the exception is propagated to the
calling environment.

Oracle9i: PL/SQL Fundamentals 8-4

Exception Types

* Predefined Oracle Server Implicitly
raised

®* Nonpredefined Oracle Server

* User-defined Explicitly raised

8-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Exception Types
Y ou can program for exceptions to avoid disruption at run time. There are three types of exceptions.

Exception Description Directionsfor Handling
Predefined Oracle One of approximately 20 Do not declare and allow the
Server error errorsthat occur most often | Oracle server to raise them
in PL/SQL code implicitly
Nonpredefined Any other standard Oracle Declare within the declarative
Oracle Server error Server error section and alow the Oracle
Server to raise them implicitly
User-defined error A condition that the Declare within the declarative
developer determinesis section, and raise explicitly
abnormal

Note: Some application tools with client-side PL/SQL, such as Oracle Developer Forms, have their
own exceptions.

Oracle9i: PL/SQL Fundamentals 8-5

Trapping Exceptions

Syntax:

EXCEPTI ON
WHEN exceptionl [OR exception2 . . .] THEN
st at enent 1,
st at enent 2;

[WHEN exception3 [OR exceptiond4 . . .] THEN
st at enent 1;
st at enent 2;
A
[WHEN OTHERS THEN
statenent 1;
st at enent 2;

-

8-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Exceptions

Y ou can trap any error by including a corresponding routine within the exception handling section of
the PL/SQL block. Each handler consists of a WHEN clause, which specifies an exception, followed
by a sequence of statements to be executed when that exception is raised.

In the syntax:
exception isthe standard name of a predefined exception or the name of a user-
defined exception declared within the declarative section.
statement isone or more PL/SQL or SQL statements.
OTHERS isan optional exception-handling clause that traps unspecified
exceptions.

VWHEN OTHERS Exception Handler

The exception-handling section traps only those exceptions that are specified; any other exceptions
are not trapped unless you use the OTHERS exception handler. This traps any exception not yet
handled. For this reason, OTHERS is the last exception handler that is defined.

The OTHERS handler traps all exceptions not already trapped. Some Oracle tools have their own
predefined exceptions that you can raise to cause events in the application. The OTHERS handler
also traps these exceptions.

Oracle9i: PL/SQL Fundamentals 8-6

8-7

Trapping Exceptions Guidelines

* The EXCEPTI ONkeyword starts exception-handling

section.

* Several exception handlers are allowed.
®* Only one handler is processed before leaving the

block.

* \WHEN OTHERS s the last clause.

Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines

Begin the exception-handling section of the block with the EXCEPTI ON keyword.
Define severa exception handlers, each with its own set of actions, for the block.

When an exception occurs, PL/SQL processes only one handler before |eaving the block.
Place the OTHERS clause after all other exception-handling clauses.

Y ou can have only one OTHERS clause.

Exceptions cannot appear in assignment statements or SQL statements.

Oracle9i: PL/SQL Fundamentals 8-7

Trapping Predefined Oracle Server Errors

* Reference the standard name in the exception-
handling routine.

e Sample predefined exceptions:
— NO_DATA_FOUND
— TOO MANY_ROWG
— | NVALI D_CURSOR
— ZERO DI VI DE
— DUP_VAL_ON_I NDEX

8-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Predefined Oracle Server Errors

Trap apredefined Oracle Server error by referencing its standard name within the corresponding
exception-handling routine.

For acompletelist of predefined exceptions, see PL/SQL User’s Guide and Reference, “ Error
Handling.”

Note: PL/SQL declares predefined exceptions in the STANDARD package.

It isagood ideato always handle the NO_DATA FOUND and TOO_MANY_ROWS exceptions, which
are the most common.

Oracle9i: PL/SQL Fundamentals 8-8

Predefined Exceptions

Exception Name Oracle Description
Server
Error
Number
ACCESS_I NTO_NULL ORA- Attempted to assign val ues to the attributes
06530 of an uninitialized object
CASE_NOT_FOUND ORA- None of the choicesin the WHEN clauses of
06592 a CASE statement is sdlected, and thereis
no ELSE clause.
COLLECTI ON_I'S_NULL ORA- Attempted to apply collection methods
06531 other than EXI STS to an uninitialized

nested table or varray

CURSOR_ALREADY_OPEN ORA-

Attempted to open an already open cursor

06511

DUP_VAL_ON_I NDEX ORA- Attempted to insert a duplicate value
00001

| NVALI D_CURSOR ORA- lllega cursor operation occurred
01001

| NVALI D_NUMBER ORA- Conversion of character string to number
01722 fals

LOE N_DENI ED ORA- Logging on to Oracle with an invalid
01017 username or password

NO_DATA_FOUND ORA- Single row SELECT returned no data
01403

NOT_LOGGED_ON ORA- PL/SQL program issues a database call
01012 without being connected to Oracle

PROGRAM ERROR ORA- PL/SQL has an internal problem
06501

ROMYPE_M SMATCH ORA- Host cursor variable and PL/SQL cursor
06504

variable involved in an assignment have
incompatible return types

Oracle9i: PL/SQL Fundamentals 8-9

Predefined Exceptions (continued)

Exception Name

Oracle
Server
Error
Number

Description

STORAGE_ERROR

ORA-
06500

PL/SQL ran out of memory or memory is
corrupted.

SUBSCRI PT_BEYOND_COUNT ORA-

06533

Referenced a nested table or varray element
using an index number larger than the number
of elementsin the collection.

SUBSCRI PT_OUTSIDE LIM T | ORA-

Referenced a nested table or varray element

06532 using an index number that is outside the legal
range (—1 for example)
SYS_I NVALI D_ROW D ORA- The conversion of a character string into a
01410 universal ROW D fails because the character
string does not represent avalid RON D.
TI MEQUT_ON_RESOURCE ORA- Time-out occurred while Oracle is waiting for
00051 aresource.
TOO_MANY_RONG ORA- Single-row SELECT returned more than one
01422 row.
VALUE_ERROR ORA- Arithmetic, conversion, truncation, or size-
06502 constraint error occurred.
ZERO DI VI DE ORA- Attempted to divide by zero
01476

Oracle9i: PL/SQL Fundamentals 8-10

Predefined Exceptions

Syntax:
BEG N

EXCEPTI ON
VWHEN| NO_DATA FOUND |THEN
statenent 1;
st at enent 2;

WHEN | TOO_MANY _ROWS | THEN
statenent 1;
VWHEN OTHERS THEN
st at enent 1,
st at enent 2;
st at enent 3;

END,;

8-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Predefined Oracle Server Exceptions

When an exception is raised, normal execution of your PL/SQL block or subprogram stops and
control transfersto its exception-handling part, which is formatted as shown on the dide.

To catch raised exceptions, you write exception handlers. Each handler consists of a WHEN clause,
which specifies an exception, followed by a sequence of statements to be executed when that
exception israised. These statements complete execution of the block or subprogram; control does
not return to where the exception was raised. In other words, you cannot resume processing where
you left off.

The optional OTHERS exception handler, which, if present, is aways the last handler in ablock or
subprogram, acts as the handler for al exceptions that are not named specifically. Thus, ablock or
subprogram can have only one OTHERS handler. Asthe following example shows, use of the
OTHERS handler guarantees that no exception will go unhandled:

EXCEPTI ON
VWHEN ... THEN
-- handl e the error
VWHEN ... THEN

-- handl e the error
WHEN OTHERS THEN
-- handle all other errors
END;

Oracle9i: PL/SQL Fundamentals 8-11

Trapping Nonpredefined Oracle

Server Errors

\4

Declare Associate

Declarative section

A\ 4

Reference

Exception-handling
section

Name the Code the PRAGVA Handle the raised
exception EXCEPTION_INI'T exception
8-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Nonpredefined Oracle Server Errors

Y ou trap a nonpredefined Oracle server error by declaring it first, or by using the OTHERS handler.
The declared exception israised implicitly. In PL/SQL, the PRAGVA EXCEPTI ON_I NI T tellsthe
compiler to associate an exception name with an Oracle error number. That allows you to refer to

any interna exception by hame and to write a specific handler for it.

Note: PRAGVA (aso called pseudoinstructions) is the keyword that signifies that the statement isa
compiler directive, which is not processed when the PL/SQL block is executed. Rather, it directsthe

PL/SQL compiler to interpret all occurrences of the exception name within the block as the

associated Oracle server error number.

Oracle9i: PL/SQL Fundamentals 8-12

Nonpredefined Error

Trap for Oracle server error number —2292, an
integrity constraint violation.

DEFI NE p_deptno = 10

DECLARE
e_enps_remai ni ng EXCEPTI ON; |

PRAGVA EXCEPTION INIT
(e_enps_renni ni ng, -2292);

BEG N
DELETE FROM departnents
WHERE departnent _id = &p_dept no;
COW T;
EXCEPTI ON
WHEN|e_enps_rengi ning | THEN @
DBMS QUTPUT. PUT_LI NE (' Cannot renove dept ' ||
TO CHAR(&p_deptno) || '. Enployees exist. ');
END,

OXC)

8-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping a Nonpredefined Oracle Server Exception
1. Declarethe name for the exception within the declarative section.
Syntax
exception EXCEPTI ON;
where: exception is the name of the exception.

2. Associate the declared exception with the standard Oracle server error number using the
PRAGVA EXCEPTI ON_I NI T statement.

Syntax
PRAGVA EXCEPTI ON_I NI T(excepti on, error_nunber);
where: exception isthe previoudy declared exception.

error_number isastandard Oracle Server error number.
3. Reference the declared exception within the corresponding exception-handling routine.
Example

If there are employeesin a department, print a message to the user that the department cannot be
removed.

Oracle9i: PL/SQL Fundamentals 8-13

Functions for Trapping Exceptions

* SQLCODE: Returns the numeric value for the
error code

* SQLERRM Returns the message associated
with the error number

8-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Error-Trapping Functions

When an exception occurs, you can identify the associated error code or error message by using two
functions. Based on the values of the code or message, you can decide which subsequent action to
take based on the error.

SQLCODE returns the number of the Oracle error for internal exceptions. Y ou can pass an error
number to SQLERRM which then returns the message associated with the error number.

Function Description

SQLCCDE Returns the numeric value for the error code (Y ou can assign it to a NUMBER
variable.)

SQLERRM Returns character data containing the message associated with the error
number

Example SQLCODE Values

SQLCODE Value | Description

0 No exception encountered

1 User-defined exception

+100 NO_DATA_FOUND exception
negative number Another Oracle server error number

Oracle9i: PL/SQL Fundamentals 8-14

Functions for Trapping Exceptions

Example:

DECLARE

v_error_code NUVBER;
V_error_nessage VARCHAR2(255) ;
BEGA N

EXCEPTI ON
WHEN OTHERS THEN
ROLLBACK;
v_error_code : =| SQ_CCDE|;
vV_error_nessage =| SQ_ERRM|;
| NSERT I NTO errors

VALUES(v_error_code, v_error_nessage);
END;

A

A

8-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Error-Trapping Functions (continued)

When an exception istrapped in the WHEN OTHERS exception handler, you can use a set of generic
functions to identify those errors. The example on the slideillustrates the values of SQL CODE and
SQLERRM being assigned to variables and then those variables being used in a SQL statement.

Y ou cannot use SQLCCDE or SQLERRM directly in a SQL statement. Instead, you must assign
their valuesto local variables, then use the variablesin the SQL statement, as shown in the following
example:
DECLARE

err_num NUMBER,

err_msg VARCHAR2(100);
BEG N

EXCEPTI ON

WHEN OTHERS THEN
err_num : = SQLCODE;
err_msg := SUBSTR(SQLERRM 1, 100);
I NSERT I NTO errors VALUES (err_num err_nsg);
END;

Oracle9i: PL/SQL Fundamentals 8-15

Trapping User-Defined Exceptions

Declare > Raise > Reference
Declarative Executable Exception-handling
section section section
Name the Explicitly raise the Handle the raised
exception. exception by using the exception.
RAI SE statement.
8-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping User-Defined Exceptions
PL/SQL allows you to define your own exceptions. User-defined PL/SQL exceptions must be:
» Declared in the declare section of a PL/SQL block
» Raised explicitly with RAI SE statements

Oracle9i: PL/SQL Fundamentals 8-16

User-Defined Exceptions

Example:
DEFI NE p_departnent _desc = "I nformation Technol ogy ’
DEFI NE P_depart nent _nunber = 300
DECLARE
[e_i nval i d_departnent EXCEPTI QN | <:>
BEG N
UPDATE departnents
SET departnment _name = ' &o_depart nent _desc’
VWHERE departnent _id = &p_depart nment _nunber;
| F SQLYNOTFOUND THEN
RAI SE e_i nval i d_departnent; | <:>
END [|F;
COWM T;
EXCEPTI ON
VHEN[e_i nval i d_department | THEN <:>
DBMS . B such departnent id.’);
END;
8-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping User-Defined Exceptions (continued)
Y ou trap a user-defined exception by declaring it and raising it explicitly.
1. Declare the name for the user-defined exception within the declarative section.
Syntax:
exception EXCEPTI ON,;
where: exception is the name of the exception
2. Usethe RAISE statement to raise the exception explicitly within the executable section.
Syntax:
RAI SE excepti on;
where: exception isthe previoudy declared exception
3. Reference the declared exception within the corresponding exception-handling routine.
Example

This block updates the description of a department. The user supplies the department number and the
new name. If the user enters a department number that does not exist, no rows will be updated in the
DEPARTMENTS table. Raise an exception and print a message for the user that an invalid
department number was entered.

Note: Usethe RAI SE statement by itself within an exception handler to raise the same exception
back to the calling environment.

Oracle9i: PL/SQL Fundamentals 8-17

Calling Environments

ISQL*Plus Displays error number and message
to screen

Procedure Builder | Displays error number and message
to screen

Oracle Developer |Accesses error number and message

Forms in atrigger by means of the

ERROR_CCODE and ERROR_TEXT
packaged functions

Precompiler Accesses exception number through

application the SQLCA data structure

An enclosing Traps exception in exception-

PL/SQL block handling routine of enclosing block
8-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Propagating Exceptions

Instead of trapping an exception within the PL/SQL block, propagate the exception to alow the
calling environment to handle it. Each calling environment hasits own way of displaying and
accessing errors.

Oracle9i: PL/SQL Fundamentals 8-18

Propagating Exceptions

DECLARE
e_no_rows excepti on;
e_integrity exception;
PRAGVA EXCEPTION_INIT (e_integrity, -2292);
BEG N
FOR c_record IN enp_cursor LOOP
BEG N
Subblocks can handle SELECT ...
. UPDATE . ..
an exceptlpn or pass | F SQLUNOTFOUND THEN
the exception to the RAI SE e_no_r ous;
: END | F;
enclosing block. iy
END LOOP;
EXCEPTI ON
VWHEN e_integrity THEN ...
VWHEN e_no_rows THEN ...
END;
8-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Propagating an Exception in a Subblock

When a subblock handles an exception, it terminates normally, and control resumesin the enclosing
block immediately after the subblock END statement.

However, if PL/SQL raises an exception and the current block does not have a handler for that
exception, the exception propagates in successive enclosing blocks until it finds a handler. If none of
these blocks handle the exception, an unhandled exception in the host environment results.

When the exception propagates to an enclosing block, the remaining executable actionsin that block
are bypassed.

One advantage of this behavior is that you can enclose statements that require their own exclusive
error handling in their own block, while leaving more general exception handling to the enclosing
block.

Observein the examplethat theexcepti ons,e_no_rows ande_integrity, aredeclaredin
the outer block. In theinner block, whenthee _no_r ows exception is raised, PL/SQL looks for the
exception in the sub block. Because the exception is not declared in the subblock, the exception
propagates to the outer block, where PL/SQL finds the declaration.

Oracle9i: PL/SQL Fundamentals 8-19

The RAI SE_APPLI CATI ON_ERROR
Procedure

Syntax:

rai se_application_error (error_nunber,
nessage[, {TRUE | FALSE}]);

®* You can use this procedure to issue user-defined
error messages from stored subprograms.

®* You can report errors to your application and
avoid returning unhandled exceptions.

8-20 Copyright © Oracle Corporation, 2001. All rights reserved.

The RAI SE_APPLI CATI ON_ERRCR Procedure

Usethe RAI SE_APPLI CATI ON_ERROR procedure to communicate a predefined exception
interactively by returning a nonstandard error code and error message. With

RAI SE_APPLI CATI ON_ERROR, you can report errors to your application and avoid returning
unhandled exceptions.

In the syntax:
error_number is a user-specified number for the exception between —20000 and
—20999.
message is the user-specified message for the exception. It is a character
string up to 2,048 bytes long.
TRUE | FALSE isan optional Boolean parameter (If TRUE, the error is placed on

the stack of previous errors. If FALSE, the default, the error
replaces al previous errors.)

Oracle9i: PL/SQL Fundamentals 8-20

The RAI SE_APPLI CATI ON_ERROR
Procedure

®* Used in two different places:
— Executable section
— Exception section

® Returns error conditions to the user in a manner
consistent with other Oracle server errors

8-21 Copyright © Oracle Corporation, 2001. All rights reserved.

The RAI SE_APPLI CATI ON_ERROR Procedure (continued)

RAI SE_APPLI CATI ON_ERROR can be used in either (or both) the executabl e section and the
exception section of a PL/SQL program. The returned error is consistent with how the Oracle server
produces a predefined, nonpredefined, or user-defined error. The error number and messageis
displayed to the user.

Oracle9i: PL/SQL Fundamentals 8-21

RAI SE_APPLI CATI ON_ERRCR

Executable section:
BEGQ N

DELETE FROM enpl oyees
WHERE nmanager _id = v_ngr;
| F SQLYNOTFOUND THEN
RAI SE_APPLI CATI ON_ERROR(- 20202,
"This is not a valid nanager’);
END | F;

Exception section:

EXCEPTI ON
VHEN NO_DATA FOUND THEN
RAlI SE_APPLI CATI ON_ERROR (-20201,
"Manager is not a valid enpl oyee.’);

END,

8-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

The dide showsthat the RAI SE_APPLI CATI ON_ERROR procedure can be used in both the
executable and exception sections of a PL/SQL program.

Hereis another example of aRAI SE_APPLI CATI ON_ERROR procedure that can be used in both the
executable and exception sections of a PL/SQL program:

DECLARE

e_nane EXCEPTI ON,

PRAGVA EXCEPTION_INIT (e_name, -20999);
BEG N

DELETE FROM enpl oyees
WHERE | ast_nane = ' Hi ggins’;
| F SQLYNOTFOUND THEN
name’ EAI SE_APPLI CATI ON_ERROR(- 20999, ' This is not a valid |ast

END | F;
EXCEPTI ON
VWHEN e _nanme THEN
-- handl e the error

END,
/

Oracle9i: PL/SQL Fundamentals 8-22

Summary

* EXxception types:
— Predefined Oracle server error
— Nonpredefined Oracle server error
— User-defined error
* Exception trapping
* Exception handling:
— Trap the exception within the PL/SQL block.
— Propagate the exception.

8-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In PL/SQL, awarning or error condition is called an exception. Predefined exceptions are error
conditions that are defined by the Oracle server. Nonpredefined exceptions are any other standard
Oracle Server Error. User-defined exceptions are exceptions specific to your application. Examples
of predefined exceptions include division by zero (ZERO_DI VI DE) and out of memory
(STORAGE_ERROCR). Exceptions without defined names can be assigned names, using the PRAGVA
EXCEPTI ON_I NI T statement.

Y ou can define exceptions of your own in the declarative part of any PL/SQL block, subprogram, or
package. For example, you can define an exception named | NSUFFI CI ENT_FUNDS to flag
overdrawn bank accounts. User-defined exceptions must be given names.

When an error occurs, an exception israised. That is, normal execution stops and control transfersto
the exception-handling part of your PL/SQL block or subprogram. Internal exceptions are raised
implicitly (automatically) by the run-time system. User-defined exceptions must be raised explicitly
by RAI SE statements, which can aso raise predefined exceptions.

To handle raised exceptions, you write separate routines called exception handlers. After an
exception handler runs, the current block stops executing and the enclosing block resumes with the
next statement. If thereis no enclosing block, control returns to the host environment.

Oracle9i: PL/SQL Fundamentals 8-23

Practice 8 Overview

This practice covers the following topics:
* Handling named exceptions
* Creating and invoking user-defined exceptions

8-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 8 Overview
In this practice, you create exception handlers for specific situations.

Oracle9i: PL/SQL Fundamentals 8-24

Practice 8
1. WriteaPL/SQL block to select the name of the employee with agiven salary value.

a
b.

Use the DEFI NE command to provide the salary.

Pass the value to the PL/SQL block through a iSQL* Plus substitution variable. If the saary
entered returns more than one row, handle the exception with an appropriate exception
handler and insert into the VESSAGES tabl e the message “ More than one employee with a
sdary of <salary>.”

If the salary entered does not return any rows, handle the exception with an appropriate
exception handler and insert into the MESSAGES table the message “No employee with a
salary of <salary>."

If the salary entered returns only one row, insert into the MESSAGES table the employee’s
name and the salary amount.

Handle any other exception with an appropriate exception handler and insert into the
VESSAGES tabl e the message “ Some other error occurred.”

Test the block for avariety of test cases. Display the rows from the MESSAGES table to
check whether the PL/SQL block has executed successfully. Some sample output is shown
below.

RESULTS

|hf1|:|re than one employes with a salary of GO00

|N|:| employes with a salary of 5000

|hf1|:|re than one employee with a salary of 7000

|N|:| ermployes with a salary of 2000

2. Modify the codein p3g3. sqgl to add an exception handler.

a

Use the DEFI NE command to provide the department ID and department location. Pass the
valuesto the PL/SQL block through aiSQL* Plus subgtitution variables.

Write an exception handler for the error to pass a message to the user that the specified
department does not exist. Use a bind variable to pass the message to the user.

Execute the PL/SQL block by entering a department that does not exist.

G _MESSAGE

|Department 20005 an invalid department

Oracle9i: PL/SQL Fundamentals 8-25

Practice 8 (continued)

3. WriteaPL/SQL block that prints the number of employees who earn plus or minus $100
of the salary value set for an i SQL* Plus substitution variable. Use the DEFI NE command to

provide the salary value. Pass the value to the PL/SQL block through aiSQL* Plus substitution
variable.

a. If thereisno employee within that salary range, print a message to the user indicating
that isthe case. Use an exception for this case.

b. If there are one or more employees within that range, the message should indicate how
many employees are in that salary range.

c. Handleany other exception with an appropriate exception handler. The message should
indicate that some other error occurred.

DEFI NE p_sal = 7000
DEFI NE p_sal = 2500
DEFI NE p_sal = 6500

| G_MESSAGE

|There isfare 4 emplayee(s) with a salary between B300 and 7100

| G_MESSAGE

|There isfare 12 employeels) with a salary between 2400 and 2600

| G_MESSAGE

|There isfare 3 employee(s) with a salary between 6400 and BE0O0

Oracle9i: PL/SQL Fundamentals 8-26

A

Practice Solutions

Practice 1 Solutions

1. Evauate each of the following declarations. Determine which of them are not legal and explain
why.

a DECLARE
v_id NUVBER(4) ;

Legal

b. DECLARE
V_X, V_y, v_z VARCHAR2(10);

Illegal because only oneidentifier per declaration isallowed.

c. DECLARE
v_birthdate DATE NOT NULL;

Illegal becausethe NOT NULL variable must beinitialized.

d. DECLARE
v_in_stock BOOLEAN : = 1;

Illegal because 1isnot a Boolean expression.
PL/SQL returnsthefollowing error:
PLS- 00382: expression is of wong type

Oracle9i: PL/SQL Fundamentals A-2

Practice 1 Solutions (continued)

2. Ineach of the following assignments, indicate whether the statement is valid and what the valid data
type of the result will be.

a v_days to go := v_due date - SYSDATE;
Valid; Number

b. v_sender := USER || ’: ' || TO_CHAR(v_dept_no);
Valid; Character string

c. v_sum:= $100, 000 + $250, 000;
[llegal; PL/SQL cannot convert special symbolsfrom VARCHAR2 to NUMBER.

d v_flag : = TRUE
Valid; Boolean

e v.nl:=v.n2>(2* v_n3);
Valid; Boolean

f. v_value := NULL;
Valid; Any scalar datatype

3. Create an anonymous block to output the phrase “My PL/SQL Block Works' to the screen.

VARI ABLE g_message VARCHAR2(30)
BEG N
:g_message :='My PL/SQL Bl ock Works’;
END;
/
PRI NT g_nessage

Alternate Solution:

SET SERVEROUTPUT ON
BEG N
DBVS_OUTPUT. PUT_LI NE(' My PL/ SQL Bl ock Works’);
END;
/

Oracle9i: PL/SQL Fundamentals A-3

Practice 1 Solutions (continued)
If you have time, compl ete the following exercise:

4. Createablock that declares two variables. Assign the value of these PL/SQL variablesto
iSQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block in afilenamed pl1g4. sql , by clicking the Save
Scri pt button. Remember to save the script witha. sql extension.

V_CHAR Character (variable |ength)
V_NUM Number

Assign valuesto these variables as follows:
Vari abl e Val ue

V_CHAR The literal 42 is the answer’
V_NUM The first two characters from V_CHAR

VARI ABLE g _char VARCHAR2(30)
VARI ABLE g_num NUMBER
DECLARE
v_char VARCHAR2(30);
v_num NUMBER(11, 2);

BEG N
v_char :="42 is the answer’;
v_num := TO NUMBER(SUBSTR(v_ char,1,2));
:g_char := v_char;
:g_nhum := v_num
END;
/
PRI NT g char
PRI NT g _num

Oracle9i: PL/SQL Fundamentals A-4

Practice 2 Solutions

DECLARE
v_wei ght NUVBER(3) : = 600;
v_nessage VARCHAR2(255) := 'Product 10012’ ;
BEG N
/ * SUBBL OCK* /
DECLARE
v_wei ght NUMBER(3) := 1;
vV_nessage VARCHAR2(255) := 'Product 11001’ ;
v_new_ | ocn VARCHAR2(50) := 'Europe’;
BEG N
v_weight := v _weight + 1;
: v_new locn := "Western ' || v_new._|ocn;
END;
v_weight := v _weight + 1;
Vv_nessage := v_nessage || ' is in stock’;
@ Vv_new_| ocn :=\’ Western ' || v_new. | ocn;
END; g

/

1. Evauatethe PL/SQL block above and determine the data type and value of each of the following
variables according to the rules of scoping.

a Thevaueof V_WEI GHT at position 1is:
2
The data type is NUVBER.

b. Thevaueof V_NEW LOCNat position 1is:
Western Europe
The data type is VARCHARZ.

c. Thevadueof V_WEI GHT at position 2is:
601
The data typeis NUVBER.

d. Thevaueof V_MESSAGE at position 2is:
Product 10012 isin stock
The data typeis VARCHARZ.

e. Thevaueof V_NEW LOCN at position2is:
Illegal becausev_new | ocn isnot visible outside the subblock.

Oracle9i: PL/SQL Fundamentals A-5

Practice 2 Solutions (continued)

Scope Example
DECLARE
V_cust omer VARCHAR2(50) := 'Wnansport’
v_credit_rating VARCHAR2(50) := ' EXCELLENT;
BEG N
DECLARE
v_customer NUMBER(7) := 201;
v_nane VARCHAR2(25) := ’Unisports’;
BEG N
- ’1/’ cust _o'rr‘_e‘n (-v_name~ > (\7:0_ r edi _t— ratin g:
END, 770 TTmemmTT o TTmemmmmmemmtT
:\;_ggs_t_gr_rgr_:) ‘; (/—;JaFfe > ’Y:EI;_GdIt rafl-ﬁf_;)
END;
/

Oracle9i: PL/SQL Fundamentals A-6

Practice 2 Solutions (continued)

2. Suppose you embed a subblock within a block, as shown on the previous page. Y ou declare two
variables, V_CUSTOMER and V_CREDI T_RATI NG, in the main block. Y ou also declare two
variables, V_CUSTOMER and V_NANE, in the subblock. Determine the values and data types for
each of the following cases.

a. Thevaueof V_CUSTOVERinthe subblock is:
201
The data typeis NUMBER.
b. Thevaue of V_NAME inthe subblock is:
Unisportsand
The datatypeis VARCHARZ2.
c. Thevalueof V_CREDI T_RATI NGin the subblock is:
EXCELLENT
The data typeis VARCHARZ.
d. Thevaueof V_CUSTOVERinthe main block is:
Womansport
The data typeis VARCHARZ2.
e. Thevaueof V_NAME inthemainblock is:
V_NAME isnot visiblein the main block and you would seean error.
f. Thevalueof V_CREDI T_RATI NGinthemainblock is:
EXCELLENT
The data typeis VARCHARZ.

Oracle9i: PL/SQL Fundamentals A-7

Practice 2 Solutions (continued)

3. Create and execute a PL/SQL block that accepts two numbers through i SQL* Plus substitution
variables.

a. Use the DEFI NE command to provide the two values.
DEFI NE p_numl=2 -- exanpl e
DEFI NE p_nunm2=4 -- exanpl e

b. Pass these two values defined in step a above, to the PL/SQL block through iSQL* Plus
substitution variables. The first number should be divided by the second number and have the
second number added to the result. The result should be stored in a PL/SQL variable and printed
on the screen.

Note SET VERI FY OFF inthe PL/SQL block.

SET ECHO OFF

SET VERI FY OFF

SET SERVEROUTPUT ON
DECLARE

v_numnil NUMBER(9, 2) : = &p_nuni;
v_nung NUMBER(9, 2) : = &p_nun®;
v_result NUMBER(9, 2) ;

BEG N
v result := (v_nunl/v_nunR) + v_nunt;

/* Printing the PL/SQL variable */
DBVS QUTPUT. PUT_LINE (v_result);
END;
/
SET SERVEROQUTPUT OFF
SET VERI FY ON
SET ECHO ON

Oracle9i: PL/SQL Fundamentals A-8

Practice 2 Solutions (continued)
4. Build aPL/SQL block that computes the total compensation for one year.

a. Theannud salary and the annual bonus percentage values are defined using the DEFI NE
command.

b. Passthe values defined in the above step to the PL/SQL block through i SQL* Plus substitution
variables. The bonus must be converted from a whole number to adecimal (for example, 15to
A5). If thesdlary isnul |, set it to zero before computing the total compensation. Execute the
PL/SQL block. Reminder: Use the NVL function to handle nul | values.

Note: Total compensation isthe sum of the annual salary and the annual bonus.

Method 1: When an iSQL* Plus variableis used:

a. VARI ABLE g _total NUMBER
DEFI NE p_sal ar y=50000
DEFI NE p_bonus=10

b. SET VERI FY COFF
DECLARE

v_salary NUMBER : = &p_sal ary;

v_bonus NUMBER : = &p_bonus;
BEG N

;g total := NVL(v_salary, 0) * (1 + NVL(v_bonus, 0) / 100);
END;

/
PRI NT g total
SET VERI FY ON

Alternate Solution: When aPL/SQL variableis used:

a. DEFINE p_sal ary=50000
DEFI NE p_bonus=10

b. SET VERI FY OFF
SET SERVEROQUTPUT ON

DECLARE
v_sal ary NUMBER :
v_bonus NUMBER :
BEG N
dbrms_out put. put _|ine(TO CHAR(NVL(v_sal ary, 0) *
(1 + NVL(v_bonus, 0) / 100)));

&p_sal ary;
&p_bonus;

END;

/

SET VERI FY ON

SET SERVEROQUTPUT OFF

Oracle9i: PL/SQL Fundamentals A-9

Practice 3 Solutions

1. CreateaPL/SQL block that selects the maximum department number in the DEPARTMVENTS table and
storesit in an iSQL*Plus variable. Print the results to the screen. Save your PL/SQL block in afile
named p3ql. sql by clickingthe Save Scri pt button. Savethe script witha. sql extension.

VARI ABLE g_rmax_dept no NUVBER
DECLARE
v_max_dept no NUMBER,
BEG N
SELECT max(departnent id)
| NTO v_max_dept no
FROM depart nment s;
:g_max_deptno : = v_max_dept no;
END;
/
PRI NT g_nmax_dept no

Alter nate Solution:
SET SERVEROQUTPUT ON

DECLARE
v_max_dept no NUVBER,

BEG N

SELECT MAX(departnment _id) |NTO v_nmax_dept no
dbrs_out put . put _Ii ne(v_nmax_dept no) ;

END;
/

FROM depart nent s;

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the DEPARTVENTS
table. Save the PL/SQL block in afile named p3g2. sqgl by clicking the Save Script button. Save the

script witha. sql extension.

a. Usethe DEFI NE command to provide the department name. Name the new department Educat i on.

SET ECHO OFF
SET VERI FY OFF
DEFI NE p_dname = Educati on

b. Pass the value to the PL/SQL block through aiSQL* Plus substitution variable. Rather than printing
the department number retrieved from exercise 1, add 10 to it and use it as the department number for

the new department.
c. Leave the location number as null for now.

Oracle9i: PL/SQL Fundamentals A-10

Practice 3 Solutions (continued)
DECLARE
v_max_deptno departnents. departnent i d%YPE;
BEG N
SELECT MAX(departnent _id) + 10
I NTO v_max_deptno
FROM departnents;
| NSERT | NTO departnents (departnment _id, departnent_nane,
| ocation_id)
VALUES (v_max_deptno, ' &p_dnanme’, NULL);
COW T;
END;
/
SET VERI FY ON
SET ECHO ON

d. Executethe PL/SQL block.

e. Display the new department that you created.
SELECT *
FROM departments
WHERE departnent _nanme = ' Education’;

3. CreateaPL/SQL block that updates the location 1D for the new department that you added in the
previous practice. Save your PL/SQL block in afile named p3qg3. sql by clicking the Save
Scri pt button. Savethe script witha. sql extension.

a UseaniSQL*Plus variable for the department ID number that you added in the previous practice.
b. Usethe DEFI NE command to provide the location ID. Name the new location ID 1700.

SET VERI FY OFF

DEFI NE p_deptno = 280

DEFINE p_loc = 1700
c. Passthe valueto the PL/SQL block through aiSQL* Plus subgtitution variable. Test the PL/SQL

block.
BEG N
UPDATE departments
SET location_id = &p_| oc
VHERE departnent _id = &p_dept no;
COW T;
END,
/
SET VERI FY ON

d. Display the department that you updated.

SELECT * FROM departnents
WHERE departnent _id = &p_dept no;

Oracle9i: PL/SQL Fundamentals A-11

Practice 3 Solutions (continued)

4. Create a PL/SQL block that deletes the department that you created in exercise 2. Save the PL/SQL
block inafilenamed p3g4. sql by clickingthe Save Scri pt button. Save the script witha. sql

extension.

a. Usethe DEFI NE command to provide the department 1D.
SET VERI FY OFF
VARI ABLE g result VARCHAR2(40)
DEFI NE p_deptno = 280

b. Passthe valueto the PL/SQL block through aiSQL* Plus substitution variable Print to the screen the
number of rows affected.

c. Testthe PL/SQL block.

DECLARE

v_result NUMBER(2);
BEG N

DELETE

FROM departnents

WHERE department _id = &p_deptno;
v_result := SQLYRONCOUNT;
cg_result := (TOCHAR(v_ result) || ' rowms) deleted.’);
COW T,;
END;
/
PRI NT g_result
SET VERI FY ON

d. Confirmthat the department has been del eted.

SELECT *
FROM departnments
WHERE departnment id = 280;

Oracle9i: PL/SQL Fundamentals A-12

Practice 4 Solutions

1. Executethecommandinthefilel ab04_1. sql to create the MESSAGES table. Write a PL/SQL
block to insert numbersinto the MESSAGES table.

CREATE TABLE nessages (results VARCHAR2 (60));
a. Insert the numbers 1 to 10, excluding 6 and 8.

b. Commit before the end of the block.
BEGQ N
FORi IN1..10 LOOP
IFi =6 or i =8 THEN
nul | ;
ELSE
I NSERT | NTO nessages(results)
VALUES (i);
END | F;
COW T;
END LQOOP;
END;
/

Note: i isbeing implicitly converted. A better way to code would be to explicitly convert the NUVBER
to VARCHARZ.

c. Select from the MESSAGES table to verify that your PL/SQL block worked.

SELECT *
FROM nessages;

2. Create a PL/SQL block that computes the commission amount for a given employee based
on the employee' s salary.

a. Usethe DEFI NE command to provide the employee ID. Pass the value to the PL/SQL block
through a iSQL* Plus substitution variable.

SET SERVEROUTPUT ON
SET VERI FY OFF
DEFI NE p_enpno = 100

b. If the employee s saary isless than $5,000, display the bonus amount for the employee
as 10% of the salary.

c. If the employee ssadary is between $5,000 and $10,000, display the bonus amount for the
employee as 15% of the salary.

d. If the employee' s saary exceeds $10,000, display the bonus amount for the employee as
20% of the salary.

e. If the employee ssaary is NULL, display the bonus amount for the employee as 0.

f. Test the PL/SQL block for each case using the following test cases, and check each
bonus amount.

Note: Include SET VERI FY OFF inyour solution.

Oracle9i: PL/SQL Fundamentals A-13

Practice 4 Solutions (continued)
DECLARE
v_enpno
v_sal

v_bonus_per NUMBER(7, 2) ;
v_bonus NUVBER(7, 2) ;
BEG N
SELECT sal ary
| NTO v_sa

FROM enpl oyees

enpl oyees. enpl oyee_i d%'YPE
enpl oyees. sal ar y%d YPE

: = &p_enpno;

WHERE enpl oyee_id = v_enpno;
IF v_sal < 5000 THEN
v_bonus_per := .10;
ELSI F v_sal BETWEEN 5000 and 10000 THEN
v_bonus_per := .15;
ELSIF v_sal > 10000 THEN
v_bonus_per := .20;
ELSE
v_bonus_per := 0;
END | F;
v_bonus := v_sal * v_bonus_per;

DBVMS _OUTPUT. PUT_LINE (' The bonus for the

|l v_enpno || ~
END;
/

and sal ary

v_sal

enpl oyee with enployee id "’
"is ' || v_bonus);

Employee Number Salary Resulting Bonus
100 24000 4800
149 10500 2100
178 7000 1050

Oracle9i: PL/SQL Fundamentals A-14

Practice 4 Solutions (continued)
If you have time, compl ete the following exercises:

3. Create an EMP table that isareplica of the EMPLOYEES table. Y ou can do this by executing
the script| ab04_3. sql . Add anew column, STARS, of VARCHARZ data type and length 50 to
the EMP tablefor storing asterisk (*).
ALTER TABLE enp
ADD st ars VARCHAR2(50) ;

4. CreateaPL/SQL block that rewards an employee by appending an asterisk in the STARS
column for every $1000 of the employee’ s salary. Save your PL/SQL block in afile called
p4g4. sql by clickingonthe Save Scri pt button. Remember to save the script with a. sql

extension.

a. Usethe DEFI NE command to provide the employee ID. Pass the value to the PL/SQL block
through a iSQL* Plus substitution variable.

SET VERI FY COFF
DEFI NE p_enpno = 104
b. Initidizeav_ast eri sk variable that contains a NULL.

c. Append an asterisk to the string for every $1000 of the salary amount. For example, if the
employee has a salary amount of $8000, the string of asterisks should contain eight asterisks.
If the employee has a salary amount of $12500, the string of asterisks should contain 13
asterisks.

d. Update the STARS column for the employee with the string of asterisks.
e. Commit.
f. Test the block for the following values:

DEFI NE p_enpno=104
DEFI NE p_enpno=174
DEFI NE p_enpno=176

Note: SET VERI FY OFF inthe PL/SQL block

Oracle9i: PL/SQL Fundamentals A-15

Practice 4 Solutions (continued)

DECLARE
v_enpno enp. enpl oyee_i dWYPE : = TO_NUMBER(&p_enpno) ;
v_asterisk enp. stars%lYPE : = NULL;
v_sal enp. sal ar y%l'YPE;
BEG N
SELECT NVL(ROUND(sal ary/ 1000), 0)
| NTO v_sal
FROM enmp

VWHERE enpl oyee_id = v_enpno;
FORi IN 1..v_sal LOOP
v_asterisk := v_asterisk ||'*";
END LOOP;
UPDATE enp
SET stars = v_asterisk
VWHERE enpl oyee_id = v_enpno;
COW T;

END;

/

SET VERI FY ON

g. Display the rowsfrom the EMP table to verify whether your PL/SQL block has executed
successfully.

SELECT enpl oyee id, salary, stars
FROM enp
WHERE enpl oyee id IN (104, 174,176);

| EMPLOYEE_ID | SALARY | STARS
| 104 | OO0 |~

| 174 | 11000 | e

| 176 | BRO0 |

Oracle9i: PL/SQL Fundamentals A-16

Practice 5 Solutions
1. WriteaPL/SQL block to print information about a given country.
a. Declare a PL/SQL record based on the structure of the COUNTRI ES table.

b. Usethe DEFI NE command to provide the country ID. Pass the value to the PL/SQL block
through a iSQL*Plus substitution variable.

SET SERVEROUTPUT ON
SET VERI FY OFF
DEFINE p_countryid = CA

c. UseDBMs QUTPUT. PUT_LI NE to print selected information about the country. A sample
output is shown below.

DECLARE

country _record countri es¥ROMYPE;
BEG N

SELECT *

I NTO country record
FROM countries
WHERE country_id = UPPER(’ & countryid’);

DBVS_QUTPUT. PUT_LINE (' Country Id: ' |]
country _record.country_id || ° Country Nanme: ' ||
country record.country nane || ' Region: ' |]
country record.region_id);

END;
/
d. Execute and test the PL/SQL block for the countries with the IDs CA, DE, UK, US

Oracle9i: PL/SQL Fundamentals A-17

Practice 5 Solutions (continued)
2. Create a PL/SQL block to retrieve the name of each department from the DEPARTMENTS table
and print each department name on the screen, incorporating an | NDEX BY table. Savethe codein a
filecaled p5g2. sql by clicking the Save Script button. Save the script witha. sql extension.
a Declarean | NDEX BY table, M\Y_DEPT_TABLE, to temporarily store the name of the
departments.
b. Using aloop, retrieve the name of al departments currently in the DEPARTMENTS table

and storetheminthel NDEX BY table. Use the following table to assign the value for
DEPARTMENT _| D based on the value of the counter used in the loop.

COUNTER DEPARTMENT_I D

10
20
50
60
80
90

7 110

c. Using another loop, retrieve the department names from the PL/SQL table and print them to the
screen, using DBMS_OUTPUT. PUT_LI NE.

SET SERVERCUTPUT ON
DECLARE
TYPE DEPT_TABLE TYPE IS
TABLE OF departnents. depart nent _nanme%l YPE
| NDEX BY BI NARY_| NTECER;
my_dept _table dept_table_type;

DO WN P

v_count NUMBER (2) ;
v_dept no departnents. departnment i d%I'YPE;
BEG N

SELECT COUNT(*) INTO v_count FROM departnents;
FOR i IN 1..v_count
LOOP
IFi =1 THEN
v_deptno : = 10;
ELSIF i = 2 THEN
v_deptno : = 20;
ELSIF i = 3 THEN
v_deptno : = 50;
ELSIF i =4 THEN
v_deptno : = 60;
ELSIF i =5 THEN
v_deptno : = 80;
ELSIF i = 6 THEN
v_deptno : = 90;
ELSIF i =7 THEN
v_deptno := 110;
END | F;

Oracle9i: PL/SQL Fundamentals A-18

Practice 5 Solutions (continued)

SELECT departnent_nane | NTO ny_dept table(i) FROM departnents
WHERE departnment _id = v_deptno;

END LOOP;
FOR i IN 1..v_count
LOOP
DBMS_QUTPUT. PUT_LINE (ny_dept table(i));
END LOOP;
END;

/
SET SERVEROUTPUT OFF

If you have time, complete the following exercise.

3. Maodify the block you created in practice 2 to retrieve all information about each department from
the DEPARTMENTS table and print the information to the screen, incorporating an | NDEX BY

table of records.

a. Declarean| NDEX BY table, MY _DEPT_TABLE, to temporarily store the number, name, and
location of all the departments.

b. Using aloop, retrieve al department information currently in the DEPARTMENTS table and

storeit in the PL/SQL table. Use the following table to assign the value for
DEPARTMENT _| D based on the value of the counter used in the loop. Exit the loop when

the count er reachesthevalue?.

COUNTER DEPARTMENT_I D

10
20
50
60
80
90

110

N OO WNE

¢. Using another loop, retrieve the department information from the PL/SQL table and print it
to the screen, using DBMS_OQUTPUT. PUT_LI NE.

Oracle9i: PL/SQL Fundamentals A-19

Practice 5 Solutions (continued)
SET SERVEROUTPUT ON
DECLARE
TYPE dept _table type is table of departnent s¥ROMYPE
| NDEX BY Bl NARY_| NTEGER
nmy_dept _table dept _tabl e_type;
v_dept no departments. departnent _i d%'YPE
v_count NUMBER : = 7;
BEG N
FORi IN 1..v_count
LOOP
IFi =1 THEN
v_deptno : = 10;
ELSIF i = 2 THEN
v_deptno : = 20;
ELSIF i =3 THEN
v_deptno : = 50;
ELSIF i =4 THEN
v_deptno : = 60;
ELSIF i =5 THEN
v_deptno : = 80;
ELSIF i =6 THEN
v_deptno : = 90;
ELSIF i =7 THEN
v_deptno := 110;
END | F;
SELECT *
I NTO nmy_dept _tabl e(i)
FROM departnments
WHERE departnment _id = v_deptno;

END LOOP
FOR i IN 1..v_count
LOCP

DBMS_QUTPUT. PUT_LI NE (' Departnment Nunber: ' ||
my_dept _table(i).department _id

|| ' Departnment Nane: ' || my_dept _table(i).departnent _name
|| * Manager Id: "|| ny_dept_table(i).mnmnager_id
|| ' Location Id: * || my_dept_table(i).location_id);

END LOOP

END,;
/

Oracle9i: PL/SQL Fundamentals A-20

Practice 6 Solutions

1. Runthecommand inthescript| ab06_1.sql to create a new table for storing the salaries of the
employees.

CREATE TABLE top_dogs
(salary NUMBER(S, 2));
2. Create a PL/SQL block that determines the top employees with respect to salaries.

a. Accept anumber n from the user where n represents the number of top n earners from the
EMPLOYEES table. For example, to view the top five earners, enter 5.

Note: Use the DEFI NE command to provide the value for n. Pass the value to the PL/SQL
block through ai SQL* Plus substitution variable.

DELETE FROM t op_dogs;
DEFINE p_num = 5

b. Inaloop usetheiSQL* Plus substitution parameter created in step 1 and gather the salaries of
the top n people from the EMPLOYEES table. There should be no duplication in the sdaries. If
two employees earn the same salary, the salary should be picked up only once.

c. Storethesdariesinthe TOP_DOGS table.

d. Test avariety of specia cases, such asn = 0 or where nis greater than the number of employees
in the EMPLOYEES table. Empty the TOP_ DOGS table after each test. The output shown
represents the five highest salariesin the EMPLOYEES table.

DECLARE
v_num NUMBER(3) := &p_num
v_sal enpl oyees. sal ar yWd YPE;
CURSOR enp_cursor IS
SELECT di stinct salary
FROM enpl oyees
ORDER BY sal ary DESC;
BEG N

OPEN enp_cursor;
FETCH enp_cursor INTO v_sal;
VWHI LE enp_cur sor YRONCOUNT <= v_num AND enp_cur sor %~OUND LOOP
I NSERT | NTO top_dogs (sal ary)
VALUES (v_sal);
FETCH enp_cursor | NTO v_sal;
END LOOP;
CLOSE enp_cursor;
COW T,;
END;
/
SELECT * FROM t op_dogs:

Oracle9i: PL/SQL Fundamentals A-21

Practice 6 Solutions (continued)
3. CreateaPL/SQL block that does the following:

a. Usethe DEFI NE command to provide the department ID. Pass the value to the PL/SQL block
through a iSQL*Plus substitution variable.

SET SERVEROUTPUT ON
SET ECHO OFF
DEFI NE p_dept _no = 10

b. InaPL/SQL block, retrieve the last name, salary and MANAGER | D of the employees working
in that department.

c. If thesaary of the employeeislessthan 5000 and if the manager ID is either 101 or 124,
display the message<<| ast _nanme>> Due for a rai se. Otherwise, display a
message <<| ast _nanme>> Not due for a raise.

Note: SET ECHO OFF to avoid displaying the PL/SQL code every time you execute the script
d. Testthe PL/SQL block for the following cases:

Department 1D M essage

10 Whal en Due for a raise

20 Hartstein Not Due for a raise
Fay Not Due for a raise

50 Wei ss Not Due for a raise

Fripp Due for a raise

Kaufling Due for a raise
Vol | man Due for a raise
Mour gas Due for a raise

80 Russel Not Due for a raise

Partners Not Due for a raise
Errazuriz Not Due for a raise
Canbrault Not Due for a raise

Oracle9i: PL/SQL Fundamentals A-22

Practice 6 Solutions (continued)
DECLARE

v_deptno NUMVBER(4) := &p_dept _no;
v_enane enpl oyees. | ast _nane% YPE;

v_sal enpl oyees. sal ar yW YPE;
v_manager enpl oyees. manager i d% YPE;
CURSOR enp_cursor |IS

SELECT | ast _nane, sal ary, manager _i d
FROM enpl oyees
VWHERE departnment _id = v_deptno;

BEGA N

OPEN enp_cursor;
FETCH enp_cursor | NTO v_enane, v_sal,v_manager;
VWH LE enp_cur sor %4-OUND LOCP
| F v_sal < 5000 AND (v_manager = 101 OR v_manager = 124) THEN

DBVS _QUTPUT. PUT_LINE (v_ename || ' Due for a raise’);
ELSE

DBVS_QUTPUT. PUT_LINE (v_ename || ' Not Due for a raise’);
END | F;

FETCH enp_cursor | NTO v_enane, v_sal,v_manager;

END LQOOP;

CLOSE enp_cursor;

END;

/
SET SERVERQUTPUT OFF

Oracle9i: PL/SQL Fundamentals A-23

Practice 7 Solutions

1. Inaloop, use acursor to retrieve the department number and the department name from the
DEPARTMENTS table for those departments whose DEPARTMVENT_| Disless than 100. Passthe
department number to ancther cursor to retrieve from the EMPLOYEES table the detail s of
employee last name, job, hire date, and salary of those employeeswhose EMPLOYEE | Disless
than 120 and who work in that department.

SET SERVEROUTPUT ON
DECLARE
CURSOR dept _cursor IS
SELECT departnent _i d, depart nent _nane
FROM departnents
WHERE departnment _id < 100
ORDER BY departnent _id;
CURSCOR enp_cursor (v_deptno NUMBER) | S
SELECT | ast_nane,job_id, hire _date, sal ary
FROM enpl oyees
WHERE department _id = v_deptno
AND enpl oyee_id < 120;
v_current _deptno departnents. departnent i d%YPE;
v_current _dname departmnents. departnment _nanme% YPE;
v_enane enpl oyees. | ast _nanme% YPE;
v_job enpl oyees.job_i d%WI'YPE;
v_hiredate enpl oyees. hire_dat e%d YPE;
v_sal enpl oyees. sal ar y%d YPE;
v_line varchar2(100);
BEG N
v_line :=

OPEN dept _cursor;
LOOP

FETCH dept _cursor | NTO
v_current _deptno, v_current_dnane;

EXIT WHEN dept _cur sor ¥%NOTFOUND;

DBMS_QUTPUT. PUT_LI NE (' Departnment Nunber : ' ||
v_current _deptno || ' Departnent Nanme : ° || v_current_dnane);

Oracle9i: PL/SQL Fundamentals A-24

Practice 7 Solutions (continued)
DBMS_QOUTPUT. PUT_LI NE(v_Iine);
| F enp_cursor % SOPEN THEN
CLOSE enp_cursor;
END | F;
OPEN enp_cursor (v_current _deptno);
LOOP

FETCH enp_cursor | NTO
v_enane,Vv_job,v_hiredate, v_sal;

EXIT WHEN enp_cur sor ¥NOTFOUND;

DBVS_OUTPUT. PUT_LINE (v_ename || "] v_job |]
|| v_hiredate || || wv_sal);
END LOOP;

| F enp_cursor % SOPEN THEN
CLOSE enp_cursor;
END | F;
DBVS _OUTPUT. PUT_LINE(V_Iine);
END LOOP;
| F enp_cursor % SOPEN THEN
CLOSE enp_cursor;
END I F;
CLCSE dept _cursor;
END;
/
SET SERVEROQUTPUT OFF

Alternative Solution:

SET SERVEROUTPUT ON
DECLARE
CURSOR DEPT_CUR 1S
SELECT DEPARTMENT | D DEPTNO, DEPARTMENT NANME DNAME
FROM DEPARTMENTS
WHERE DEPARTMENT | D < 100;
CURSOR EMP_CUR (P_DEPTNO NUVBER) | S
SELECT * FROM EMPLOYEES
WHERE DEPARTMENT | D = P_DEPTNO AND EMPLOYEE | D < 120;

Oracle9i: PL/SQL Fundamentals A-25

Practice 7 Solutions (continued)
BEG N
FOR DEPT_REC | N DEPT_CUR LOOP

DBMS_QUTPUT. PUT_LI NE

(" DEPARTMENT NUMBER: ' || DEPT_REC. DEPTNO ||’
DEPARTMENT NAME: ' || DEPT_REC. DNAME) ;

FOR EMP_REC | N EMP_CUR(DEPT_REC. DEPTNO) LOOP

DBVS_OUTPUT. PUT_LI NE

(EMP_REC. LAST NAME ||’ ' || EMP_REC. JOB ID||’
' | | EMP_REC. Hl RE_DATE| | | | EMP_REC. SALARY) ;
END LOOP;
DBMS_OUTPUT. PUT_LI NE(CHR(10)) ;
END LOOP;
END;

/

Oracle9i: PL/SQL Fundamentals A-26

Practice 7 Solutions (continued)
2. Maodify the codeinsol 04_4. sql toincorporate a cursor using the FOR UPDATE and WHERE
CURRENT OF functionality in cursor processing.

a. Define the host variables.

SET VERI FY OFF
DEFI NE p_enmpno = 104

b. Execute the modified PL/SQL block
DECLARE
v_enpno enp. enpl oyee_i dWYPE : = &p_enpno;
v_asterisk enp.stars%WYPE : = NULL;
CURSOR emp_cursor | S
SELECTenpl oyee i d, NVL(ROUND(sal ary/1000), 0) sal
FROM enp
VWHERE enpl oyee_id = v_enpno
FOR UPDATE;
BEG N
FOR enp_record IN enp_cursor LOOP
FOR i IN 1..enp_record.sal LOOP

v_asterisk := v_asterisk ||"*";
DBVS_OUTPUT. PUT LI NE(v_asteri sk);
END LOOP;
UPDATEenp

SET stars = v_asterisk
VWHERE CURRENT OF enp_cursor;
v_asterisk := NULL;
END LOOP;
COW T;
END;
/
SET VERI FY ON

c. Execute the following command to check if your PL/SQL block has worked successfully:
SELECT enpl oyee_id, sal ary, stars

FROM EMP
WHERE enpl oyee id IN (176,174, 104);

Oracle9i: PL/SQL Fundamentals A-27

Practice 8 Solutions
1. WriteaPL/SQL block to select the name of the employee with a given sdary value.
a. Usethe DEFI NE command to provide the salary.
SET VERI FY OFF
DEFI NE p_sal = 6000

b. Passthevaluetothe PL/SQL block through a iSQL*Plus substitution variable. If the sdary
entered returns more than one row, handle the exception with an appropriate exception
handler and insert into the MESSAGES table the message “ More than one employee with a

salary of <salary>."

c. If the saary entered does not return any rows, handle the exception with an appropriate
exception handler and insert into the MESSAGES table the message “No employee with a
sdary of <salary>.”

d. If the sdary entered returns only one row, insert into the MESSAGES table the employee's
name and the salary amount.

e. Handle any other exception with an appropriate exception handler and insert into the
MESSAGES tabl e the message “ Some other error occurred.”

f. Test theblock for avariety of test cases. Display the rows from the MESSAGES table to check
whether the PL/SQL block has executed successfully

DECLARE

v_ename enpl oyees. | ast _nanme% YPE;

v_sal enpl oyees. sal ary%YPE : = &p_sal ;
BEG N

SELECT | ast _nane

| NTO V_enane

FROM enpl oyees

VWHERE salary = v_sal;
I NSERT | NTO nessages (results)
VALUES (v_ename || ' - " || v_sal);
EXCEPTI ON
WHEN no_dat a_f ound THEN
| NSERT | NTO nessages (results)
VALUES (' No enpl oyee with a salary of '|| TO CHAR(v_sal));
VWHEN t oo_rmany_rows THEN
I NSERT | NTO nessages (results)
VALUES (' More than one enployee with a salary of ||
TO CHAR(v_sal));
WHEN ot hers THEN
I NSERT | NTO nessages (results)
VALUES ('’ Sone other error occurred.’);
END;
/
SET VERI FY ON

Oracle9i: PL/SQL Fundamentals A-28

Practice 8 Solutions (continued)

2. Modify the codein p3g3. sql to add an exception handler.
a. Use the DEFI NE command to provide the department 1D and department location. Pass the
valuestothe PL/SQL block through a iSQL* Plus substitution variables.

SET VERI FY OFF

VARl ABLE g nessage VARCHAR2(100)
DEFI NE p_deptno = 200

DEFI NE p_l oc = 1400

b. Write an exception handler for the error to pass a message to the user that the specified
department does not exist. Use a bind variable to pass the message to the user.

c. Execute the PL/SQL block by entering a department that does not exist.

DECLARE

e_invalid_dept EXCEPTI ON;

v_dept no departnments. departnent i d%YPE : = &p_dept no;
BEG N

UPDATE departnents
SET location_id = & _|oc
WHERE departnment _id = &p_dept no;
COW T;
| F SQLYNOTFOUND THEN
rai se e_invalid_dept;
END | F;
EXCEPTI ON
WHEN e _invalid dept THEN

:g_message := 'Departnment '|| TO CHAR(v_deptno) ||’ is an
invalid departnent’;

END;

/

SET VERI FY ON
PRI NT g_nessage

Oracle9i: PL/SQL Fundamentals A-29

Practice 8 Solutions (continued)

3. WriteaPL/SQL block that prints the number of employees who earn plus or minus $100
of the salary value set for an iSQL* Plus substitution variable. Use the DEFI NE command to

provide the salary value. Pass the value to the PL/SQL block through aiSQL* Plus substitution
variable.

a. If thereis no employee within that salary range, print a message to the user indicating
that isthe case. Use an exception for this case.
VARI ABLE g _nessage VARCHAR2(100)
SET VERI FY OFF
DEFI NE p_sal = 7000

b. If there are one or more employees within that range, the message should indicate
how many employees are in that salary range.

¢. Handle any other exception with an appropriate exception handler. The message should
indicate that some other error occurred.

DECLARE
v_sal enpl oyees. sal arydYPE : = &p_sal ;
v_| ow sal enpl oyees. sal arydYPE : = v_sal - 100;
v_hi gh_sal enpl oyees. sal aryddYPE : = v_sal + 100;
vV_no_enp NUMVBER(7) ;

e _no_enp_returned EXCEPTI ON,;
e_nore_t han_one_enp EXCEPTI ON,
BEG N
SELECT count (| ast_name)
INTO _no_enp
FROM enpl oyees
WHERE sal ary between v_| ow sal and v_hi gh_sal;
IF v_no enmp = 0 THEN
RAI SE e_no_enp_r et ur ned;
ELSIF v_no_enp > 0 THEN
RAI SE e_nore_t han_one_enp;
END | F;

Oracle9i: PL/SQL Fundamentals A-30

Practice 8 Solutions (continued)

EXCEPTI ON
WHEN e_no_enp_returned THEN
:g_nessage := 'There is no enpl oyee sal ary between ||

TO CHAR(v_low sal) || ' and ||
TO CHAR(v_hi gh_sal);
WHEN e nore_than_one_enp THEN
:g_message := 'There is/are || TO CHAR(v_no_emp) ||
" enpl oyee(s) with a salary between ||
TO CHAR(v_low sal) || ' and ||
TO CHAR(v_hi gh_sal);
WHEN ot hers THEN
:g_nmessage := 'Sone other error occurred.’;
END;
/
SET VERI FY ON
PRI NT g_nessage

Oracle9i: PL/SQL Fundamentals A-31

Oracle9i: PL/SQL Fundamentals A-32

B

Table Descriptions and
Data

ENTITY RELATIONSHIP DIAGRAM

HR

JOB _HISTORY
employee_id
start_date
end date
joo id
department_id

DEPARTMENTS
department_id
depantmeant_name
manage”_id
location_id

h

N
1
1

JOBS
job_id
jok_title
min_salary
max_salary

EMPLOYEES
employee_id
first_name
last_name
email
phone _number
hire date
job_id
salary
COMMmIssion_pct
manage”_id
department_id

Oracle9i: PL/SQL Fundamentals B-2

LOCATIONS

location_id
street address
postal_code
City
state province
country_id

’

COUNTRIES
country_id
country_name
region_id

d

REGIONS
region_id
regqion_name

Tables in the Schema

SELECT * FROMt ab;

| THAME | TABTYPE | CLUSTERID
(COUNTRIES TABLE |
IDEPARTMENTS TABLE |
[EMPLOYEES TABLE |
[EMP_DETAILS_WIEWY = |
JOBS TABLE |
JOB_HISTORY TABLE |
ILOCATIONS TABLE |
IREGIONS TABLE |

B rows selected.

Oracle9i: PL/SQL Fundamentals B-3

REG ONS Table

DESCRI BE r egi ons

| Hame | Mull? | Type
IREGION_ID IMOT MULL INUMBER
IREGION_NAME | WARCHARZ(25)
SELECT * FROM regi ons;

| REGION_ID | REGION_NAME

| 1 |Eur|:|pe

| 2 |Amerin:as

| 3 | Asia

|

4 |Middle East and Africa

Oracle9i: PL/SQL Fundamentals B-4

COUNTRI ES Table

DESCRI BE countri es

| Name | Null? | Type
ICOUNTRY_ID IMOT MULL (CHAR(Z)

ICOUNTRY_MAME | WARCHARZ(AD)

IREGION_ID | NUMBER

SELECT * FROM countri es;

fico | COUNTRY_NAME | REGION_ID

|AH |Argentina | 2
AL \Australia | 3
IBE Belgium | 1
IBR |Brazil | 2
CA Canada | 2
ICH |Switzerland | 1
ICM China | 3
|DE |Germany | 1
|DI«<2 |Denmark | 1
EG Egypt | 4
|FF{ |Fran|::e | 1
|HH |Hungl{ung | d
m llzrael | 4
I lIndia | 3
o | COUNTRY_NAME | REGION_ID

I lItaly | 1
|.JF' |Japan | d
[y Kt | 4
I IMexico | 2
NG IMigeria | 4
ML INetherlands | 1
|SG |Singapnre | d
UK \United Kingdarn | 1
|LJS |United States of America | 2
M \Zarmbia | 4
I \Zimbabwe | 4

20 rovws selected.

Oracle9i: PL/SQL Fundamentals B-5

LOCATI ONS Table

DESCRI BE | ocati ons;

| Name | | Type
ILOCATION_ID IMOT MULL INUWMBER(4)
\STREET_ADDRESS | WARCHARZ(40)
IPOSTAL CODE | WARCHARZ(12)
ICITY IMOT MULL YARCHARZ(30)
ISTATE_PROWINCE | WARCHARZ(25)
ICOUNTRY_ID | ICHAR(2)
SELECT * FROM | ocati ons;

ILOCATION_ID | STREET _ADDRESS

IPOSTAL_CODE | CITY

ISTATE_PROVINCE |CO

| 1000 1297 %ia Cola di Rie 00989 IRormna | I

| 1100 (93091 Calle della Testa |10934 MWenice | T

| 1200 2017 Shinjuku-ku 11682 Tokyo Tokyo Prefecture [P

| 1300|9450 Karniya-cho FE23 Hiroghima | P

| 1400 2014 Jabberwocky Rd 26192 Southlake |Texas s
1500 (2011 Interiors Bl 93236 Efa“;gi” California us
1600 2007 Zagara St 50090 gr'f'u“r:gwick New Jersey us
1700 2004 Charade Rd 93199 |Seattle Washington s
1800 147 Spadina Ave M5y 217 Toronto \Ontario (s
1900 [B5092 Boxwood St Y Sy 9T2 "Whiteharse | Yukaon CA
2000 |40-5-12 Langianggen 190518 Beijing | N
2100 1298 Vileparle (E) 1490231 Bombay |Maharashtra M

LOCATION_ID | STREET_ADDRESS

IPOSTAL_CODE | CITY

ISTATE_PROVINCE |CO

2400 (3204 Arthur St | LLondan | UK
Magdalen Centre, The
2500 | e e | 0X9 918 Oxfard Oxfard UK
2600 3702 Chester Road 09629850293 |Stretford | [Manchester UK
2700 |Schwanthalerstr. 7031 80925 hunich Bavaria DE
2800 |Rua Frei Caneca 1360 [01307-002 \Sao Paulo |Sao Paul BR
ogop [Rue des 1730 Geneva |Geneve CH
Corps-Saints
| 3000 |Murtenstrasse 921 3095 Berm IBE ICH
3100 e Brevanelstraat - apogeye Utrecht |Utrecht ML
| 3200 |Mariano Escobedn 9991 11932 Wexico City |Distrito Fedaral, X

23 rowes selected.

Oracle9i: PL/SQL Fundamentals B-6

DEPARTMENTS Table
DESCRI BE departnents

| Name | Mull? | Type
\DEPARTMENT ID INOT MULL NUMBER(4)
[DEPARTMENT_MAME IMOT MULL WARCHARZ(30)
IMANAGER_ID | MUMBER(E)

ILOCATION_ID | MUMBER(4)

SELECT * FROM departnents;

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION_ID

| 10 |Adrinistration | 200 || 1700
| 20 [Marketing | 201 || 1800
| 30 |Purchasing | 114 | 1700
| 40 |Human Fesources | 203 | 2400
| 50 | Shipping | 121 | 1500
| B0 |IT | 103 | 1400
| 70 |Public Relations | 204 | 2700
| 80 |Sales | 145 | 2500
| 90 |Executive | 100 | 1700
| 100 |Finance | 108 | 1700
| 110 |Accounting | 205 | 1700
| 120 | Treasury | | 1700
| 130 |Cnrpurate Tax | | 1700
| 140 |Control And Credit | | 1700
| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION ID

| 150 |Shareholder Services | | 1700
| 160 |Benefits | | 1700
| 170 |Manufacturing | | 1700
| 180 |Construction | | 1700
| 190 |Contracting | | 1700
| 200 |Operations | | 1700
| 210 |IT Support | | 1700
| 220 [NOC | | 1700
| 230 |IT Helpdesk | | 1700
| 240 |Gwernment Sales | | 1700
| 250 |Retail Sales | | 1700
| 260 ||Recruiting | | 1700
| 270 ||Payraoll | | 1700

27 rows selected.

Oracle9i: PL/SQL Fundamentals B-7

JOBS Table

DESCRI BE j obs

| Name | Mull? | Type

JOB_ID IMOT MULL WARCHAR2(10)

\JOB_TITLE IMOT MULL WARCHARZ(35)

INAIN_SALARY | INUWMBER(E)

AR SALARY | INUMBER(E)

SELECT * FROM j obs;

| JOB.ID | JOB_TITLE | MIN_SALARY | MAX SALARY
AD PRES Prasident | 20000 | 40000
AD WP \Adrinistration ‘ice President | 15000 | 30000
AD_ASST Adrministration Assistant | 3000 | BO00
FI_MGR Finance Manager | a200 | 16000
FI_ACCOUNT |Accountant | 4200 | 9000
AC_MGR ‘Accounting Manager | 200 | 16000
AC_ACCOUNT |Public Accountant | 4200 | 3000
T4, AN Sales Manager | 10000 | 20000
54, REF Sales Representative | G000 | 12000
PL_MAN \Purchasing Manager | 000 | 15000
PU_CLERK Purchasing Clerk | 2500 | 5500
ST _MAN Stock Manager | 5500 | 8500
ST _CLERK Stock Clerk | 2000 | 5000
\SH_CLERK Shipping Clerk | 2500 | 5500
| JOB.ID | JOB_TITLE | MIN_SALARY | MAX SALARY
IT_PROG Programrmer | 4000 | 10000
INIK_ AN IMarketing Manager | 9000 | 15000
MK_REP Marketing Reprasentative | 4000 | 3000
|HH_REF’ |Human Fesources Representative | 4000 | 5000
\PR_REF Public Relations Representative | 4500 | 10500

19 rowes selected.

Oracle9i: PL/SQL Fundamentals B-8

EMPLOYEES Table

DESCRI BE enpl oyees

| Name | Null? | Type
[EMPLOYEE_ID INOT NULL MUMBER(E)
FIRST_MAME | WARCHARZ(20)
ILAST MNAME INOT NULL WARCHARZ(25)
[EMAIL INOT NULL WARCHARZ(25)
\PHOME_MUMBER | WARCHARZ(20)
HIRE_DATE INOT NULL DATE
JOB_ID INOT NULL WARCHARZ(10)
(SALARY | MUMBER(S 2)
(COMMISSION_PCT | MUMBER{2 2)
IMANAGER_ID | MUMBER(E)

|

\DEPARTMENT_ID INUMBER(4)

Oracle9i: PL/SQL Fundamentals B-9

EMPLOYEES Table

The headings for columns COMM SSI ON_PCT, MANAGER _| D, and DEPARTMENT _| D are set
to COMM MGRI D, and DEPTI Din the following screenshot, to fit the table values across the page.

SELECT * FROM enpl oyees;

[EMFLOYEE_ID [FIRST_MAME [LAST_MAME | EMAIL |PHOME_MUMEBER |HIRE_DATE | JOB_ID |SALARY |eamm mgrid |deptid
| 100 || Steven |King |3KING |515.123 4567 [17-JUN-37 ||AD_PRES | 24000 | | | a0
| 101 ||Neena [Kochhar | |NKOCHHAR |515.123 4568 [z1-3EP-29 ||AD_wP | 17000 || | 100 | @0
| 102 | |Lex |De Haan |[LDEHAAN ||515.123 4569 [13-JaN-93 |[AD_wP | 17000 || | 10| @0
| 103 |Mexander |[Hunold [AHUNDLD ||590.423 4567 [03-JaN-30 |[IT_PROG | so00 || | 1wz | &0
| 104 ||Bruce |Emst [BERNST |590.423 4563 [z1-mey-91 [IT_PROG | &000 || | 13| &0
| 105 | Dawid [ustin [DAUSTIN ||590.423 4569 [25-JUN-97 | |IT_PROG | 4s00 | | 1wz | &0
| 106 |l |Pataballa |WPATABAL | |590.423.4560 [05-FEB-98 |IT_PROG | 4a00 | | 13| 60
| 107 || Diana |Lorertz |DLORENTZ | [590.423 5567 [07-FEB-99 [IT_PROG | 4200 | | 10z | 60
| 108 ||MNancy |Greenberg | |NGREEMBE [515.124.4569 [17-AUG-94 [FI_MGR | 12000 | | 101 | 100
| 109 | Daniel [Faiet [DFAIET ||515.124.4169 [16-AUG-94 [FI_ACCOUNT || 9000 | | 108 | 100
| 110 || John |Chen [JEHEN |515.124.4269 |28-SEP-97 ||FI_LACCOUNT | 2200 | | 102 | 100
| 11 | |lsmael |Sciamra [IsCIARRA ||515.124.4369 [30-SEP-97 ||FI_ACCOUNT | 7700 | | 10z | 100
| 112 || Jose hanuel |[Urman [JMURRAN ||515.124.4469 [o7-haR-95 ||[FI_ACCOUNT | 7300 | | 10z | 100
| 13 || Luis |Popp |LPoPP |515.124 4567 [07-DEC-99 ||FI_ACCOUNT | 6900 | | 108 | 100
[EMFLOYEE_ID [FIRST_MAME [L8ST MAME | EMAIL [FHOME_MUMEER [HIRE_DATE | JOB.ID [SALARY [eomm [mgrid [deptid
| 114 | Den |Raphasly |DRAPHEAL |515.127 4561 [07-DEC-94 [PU_MAN | 11000 | | 10| 30
| 115 |Mexander |Khoo [akHOO ||515.127 4562 [1a-Mav-95 (PU_CLERK || 3100 | | 14| a0
| 116 |Shell |Baida [sBAIDA ||515.127 4563 [z4DEC-97 |PU_CLERK || 2900 | | 14| 30
| 17 || Sigal [Tobias |sTOBlAS |515.127 4564 [z4-JUL97 |PU_CLERK | 2800 | | 14| 30
| 113 || Guy [Himure | |GHIMURO ||515.127 4565 [15-NO%:g8 ||PU_CLERK | 2600 | | 14| 30
| 119 || Karen |Colmenares |[KCOLMEMA |515.127 4566 [10-2UG-99 |PU_CLERK | 2500 | | 14| 30
| 120 | |Matthew [mreiss [fEISS |BS0.123.1234 [18-JUL96 | |[5T_Man | so00 || | 10| &0
| 121 || Adam |Fripp |AFRIPP 650,123 2234 [10-APR-37 ||ST_MaN | a200 || | 10| &0
| 122 ||Payam [Kaufling |PKAUFLIN ||B50.123.3234 [01-hY-85 ([ST e | 7o00 || | 10| &0
| 123 || Sharta [sollrman |SWOLLMAN ||B50.123 4234 [10-0CT-87 |[5T_MaN | @&00 || | 10| &0
| 124 || Kevin [Mourges |KMOURGOS [650.123.5234 [16-NO%99 [ST_haN | 5300 | | 10| &0
| 125 | Julia [Hayer [MNAYER ||B50.124.1214 [16-JUL-97 [ST_CLERK || 3200 | | 120 | &0
| 126 |Irene [Mkkilineni | IMIKKILL [650.124.1224 [z3-5EP-98 [ST_CLERK || 2700 | | 120 | &0
| | I

127 |.Jarne5 |Lanu:lrg.r

[JLAHDRY ||650.124.1334

[14-)20-99

|5T_CLEREK

2400 || 120 | 40

Oracle9i: PL/SQL Fundamentals B-10

EMPLOYEES Table (continued)

1 < 1

[EMPLOYEE_ID [FIRST_MAME [LOST_MOME | EMMIL [FHOME_MUMEER [HIRE_DATE | JOB_ID [SMLAFY [comm [mgrid [deptid
| 128 [Steven [narice [sMarKLE |650.124.1434 [03-meR-00 |ST_CLERK || 2200 | | 120 | &0
| 129 [Laura |Bis=ot [LBissOT |650.124.5234 [z0-AUG-97 |ST_CLERK || 3300 | | 121 | &0
| 120 | [Mozhe [#kinzon MATKINSO | [650.124.6234 [zo-0CcT-97 |sT_CLERK || 2300 | | 121 | &0
| 121 | |James [[JARLONE | |650.124.7234 [16-FEB-97 [ST_CLERE || 2800 | | 121 &0
| 122 |TJ | Dian [TJOLSON ||650.124.2234 [t0-APR99 [ST_CLERK | 2100 | | 121 50
| 133 [Jason [ntlin [IMALLING |B50.127.1934 [t4JUN-96 |ST_CLERK | 3300 | | 122 | &0
| 134 [hichael |Rogers [MROGERS |650.127.1834 [z6-AUG-38 |ST_CLERK | 2900 | | 122 | &0
| 135 [k [Gee [kGEE |650.127 1734 [tz-DEC-39 |ST_CLERK | 2400 | | 122 | s0
| 136 | [Hazel [Phittanker | [HPHILTAN | [650.127.1634 |o6-FEB-00 |ST_CLERK || 2200 | | 122 | &0
| 137 [Renske [Laduig [RLeDWNG |650.121.1234 [t4auLes (sT_CLERK || 3600 | | 123 | &0
| 138 | |Stephen | tilee= [ssTILES |660.121.2024 [z6-0CT-97 |ST_CLERK || 3200 | | 122 | s0
| 129 |John R |J5ED |650.121.2019 [12-FEB-92 |ST_CLERK || 2700 | | 12z | 50
| 140 [Joshua |Patel [JPATEL |650.121.1834 [06-APFR-93 |ST_CLERK || 2800 | | 123 | &0
| 14 [Trenna [Rajs [TRAJS |650.121.5009 [17-0CT-95 |ST_CLERK || 3500 | | 124 | &0
[EMPLOYEE_ID [FIRST_MAME [LOST_MAME | EMAMIL [PHOME_MUMEER [HIRE_DATE | JOB_ID [SALARY [comm [mgrid [deptid
| 142 | [Curtis |Davies [COMAES |650.121.2004 [z9-JaN-97 |ST_CLERK | 3100 | | 124 | 50
| 143 [Randall [nstos [RhaTOS |650.121.25874 [15-maR-98 ST_CLERK || 2600 | | 124 | s0
| 144 | |Peter [\argas [PueRGAs |650.121.2004 [pg-auLes (sT_CLERK || 2500 | | 124 | s0
| 145 [Jdahn |[Russell JRUSSEL [011.44.1344.429262 [01-0CT-95 |54 WMAN | 14000 | 4| 100 80
| 146 | [karen |Partners | [KPARTNER | [011.44.1344.467268 |D5-JAN-97 |54 MAN | 13500 | 3| 10| 80
| 147 || Alberto |Emazuriz |AERRAZUR [011.44.1344.420278 [10-MAR-97 |54 MAN | f1zo00 | 3| 10| 80
| 145 | |Gerald [Cambrautt |GCAWMBRAL [011.44.1344.619268 |15-0CT-99 |54 WMAN | 1ooo | 3| 100 | &0
| 148 [Beni [Totkey |[EZLOTKEY | [011.44.1344.429018 | 29-JAN-00 |54 WAN | 10f00 | 2z | 100 || &0
| 150 |Peter [Tucker [PTUCKER |011.44.1344 120268 [30-JAN-97 | |SA_REP | toooo | 3| 146 || &0
| 151 | [Dawid [Bemstein | [DBERNSTE [011.44.1344.345268 |24-MAR-97 |54 REP | ofoo | 25 | 146 80
| 152 | |Peter [Hall [PHALL [011.44.1344.472968 [20-ALG-97 |32 REP | oooo | 25 | 146 || 80
| 153 [Christopher | |Dlsen [COLSEN [011.44.1344.498712|[30-MAR-92 ||$A_REP | soo0 | 2| 148 80
| 154 | Manette |Cambrauft | [NCAMBRAL (011441344 0287662 09-0EC-93 |54 REP | 7800 | 2| 145 | 80
| 155 | [Oliver [Tuwault |OTUMALLT | [011.44.1344. 486508 |23-N0%:99 |54 REP | 7oo0 | 5| 145 || 80
[EMFLOYEE_ID [FIRST_MAME [LAST_MoME | EMIL [FHOME_MUMEER |[HIRE_DATE | JoOB_ IO [S0LmRY |-:Dmm [marid [deptid
| 156 [Janette |King [JKING [011.44.1345 429268 [30-JAN-96 |54 _REP | toooo | 25| 146 || 80
| 157 | [Patrick | sully [PSULLY |011.44.1345.920268 |D4-MAR-96 |54 REP | oso0 | 35| 146 || 80
| 152 [Alan [MzEwen [AMCEWEN | [011.44.1345.829268 |[01-AUG-96 |54 REP | sooo | 25| 146 || 80
| 159 | |Lindsey | 5mith [LSMITH ||011.44.1345.720268 [10-MAR-97 |34 REP | so00 | 3| 146 | 80
| 160 | |Louise |Doran [LDORAN |011.44.1345 620265 |15-0EC-97 |$A_REP | 7800 | 3| 148 || &0
| 161 | |sarath | Sewall [S5EMALL [011.44.1345 520268 |03-NOW93 |54 REP | Fooo | 25| 148 || &0
| 162 [Clara [zhney [CWISHNEY | [011.44.1346.129268 [11-HOWE7 |54 _REP | 10f00 | 25 | 147 || &0
| 163 | [Danielle | Greene |DGREENE |011.44.1346.220268 |19-MAR-99 |34 REP | esoo | a5 | 147 || 80
| 164 [hattea [Mervins [WWMARVING | [011.44.1346.329268 |[24-JAN-00 |54 REP | 7zoo | | 147 || 80
| 165 [David |Lee |DLEE [011.44.1246 529268 [23-FEB-00 |54 REP | gso0 | 1| 147 || 80
| 166 | |Sundar |Ande |S8MDE ||011.44.1346 620263 [24-MAR-00 |54 REP | Ba00 | 1| 147 | =0
| 167 || Amit |Banda |ABANDA ||011.44.1346.720268 [21-APR-DD |54 REP | 6200 | 1| 147 | 80
| 165 [Lisa | Ozer |LOZER [011.44.1343 929268 [11-MAR-S7 |54 _REP | 11500 | 25| 148 || &0
| 169 [Hamison |Bloam [HELOOM |011.44.1343 820268 |[23-MAR-93 |34 REP [toooo | 2| 148 || &0

Oracle9i: PL/SQL Fundamentals B-11

EMPLOYEES Table (continued)

[EMFLOYEE_ID [FIRST_MAME [LAST_HAME |

[FHOME_MUMEBER [HIRE_DATE |

[8LARY [camm |mgrid [deptid

EMAIL J0E_ID

| 170 | Tayler |Fex [TF o (011441343 729268 |24-J2N-05 |54 REP | esoo | 2 | 148 | =0
| 171 | [iiliam | 5mith [AISMITH (|011.44.1343 629262 [23-FEB-29 [SA_REP | 7400 | 5 | 148 | =0
| 172 ||Hizabeth [Bates [EBATES ||D11.44.1343 529263 |24-MAR-39 ||54_REP | 7a0 | 15 | 148 | =0
| 173 ||Sundita | Kumar [SKUMAR ||011.44.1343 329263 |21-APR-00 ||54_REP | &0 | 4| 148 | =0
| 174 |Blen |abel |EABEL (011.44.1644.429267 |11-MAY-96 |SA_REP | 11000 | 3| 149 | =0
| 175 || Myssa [Husttan [AHUTTON ||011.44.1644 479266 |19-MAR-37 |54 REP | sao0 | 25 | 149 | a0
| 176 || Jonathon [Tarylor [TAYLOR ||D11.44.1644 479265 |24-MAR-35 ||54_REP | seo0 | 2| 149 | =0
| 177 | Jack |Livingston | |JLIANGS ||D11.44.1644 429264 [23-APR-93 |54 _REP | sap0 | 2| 149 | =0
| 178 |Kimberely || Grant [KGRANT ||011.44.1644. 429263 [24-MAY-99 [5A_REP | 7o00 | 15 | 148 |

| 179 | Charles [Johnzon |[CJOHNSOM [011.44.1644.420262 [04-J2N-00 |54 REP | B0 | 1| 148 | =0
| 180 | Winstan [Taylor [WTAYLOR ||650.507 9576 [24-J8N-83 |SH_CLERK | 3200 | | 120 | 50
| 121 | |Jean [Fleaur [FLESIR ||650.507 9577 |23-FEB-8% |SH_CLERK | 00 | | 1z | a0
| 182 |Mbrtha [sullivan [MSULLIE |650.507 9375 [21-JUN-99 [SH_CLERK || 2500 | | 1zo0 | 40
| 183 || Girard | Geoni |GGEONI |650.507 9379 |p:-FEB-00 [SH_CLERK || 300 | | 1z | 40
[EMFLOYEE_ID [FIRST_MAME [LAST MoME | EMalL [FHOWE_MUMEBER |HIRE_DATE | JOE_ID [SALARY [comm [mgrid [deptid
| 184 |Mandita [sarchand ||NSARCHAN [B50.509.1576 [27-JAN-96 |SH_CLERK | 4200 | | 121 | &0
| 185 | Mexis {Bull [ABLLL |50 5092876 [20-FEB-87 |SH_CLERK | 4100 | | 121 | &0
| 186 | Julia [Dellinger || JDELLING [650.509.3476 [24-JUN-92 |SH_CLERK | 2400 | | 121 | &0
| 187 |fnthony [Cabrio |ACABRIO |650.509 4376 |o7-FEB-93 [SH_CLERK || 3000 | | 1z1 | 40
| 183 | |Kally |Chung [KCHUNG |650.505.1576 [14-JUN-97 [SH_CLERK || 3200 | | 1zz | 40
| 189 | Jenniter [Dilly MDILLY ||650.505 2576 [13-#UG-97 [SH_CLERK || 3600 | | 1zz | 40
| 190 [Timothey | Gates |TGATES 650 505 3876 [11-JUL98 [SH_CLERK || 2900 | | 12z | 40
| 191 ||Randall | Perkins |RPERKINS ||B50.505 4576 [19-DEC-89 [SH_CLERK || zA00 | | 12z | 40
| 192 ||Sarah |Bell |SBELL 650 5011876 [D4-FEB-96 [SH_CLERK | 4000 | | 12z | 40
| 193 || Britney |Everstt |BEWERETT [650.501.2876 [03-MAR-97 |SH_CLERK | 2900 | | 12z | 50
| 194 | Samue [McCain |SMCCAIN [650.501.3876 [M-JUL-98 |SH_CLERK | 3200 | | 12z | 50
| 195 |vance [Jones [WMIONES ||650.501.4576 [17-M2R-99 |SH_CLERK | 2800 | | 12z | 50
| 196 || Aana [iifalzh [AaneALsH ||650.507 9211 |24-APR-92 |SH_CLERK | 00 | | 124 | &0
| 197 || Kevin |Feeney ||KFEENEY |650.507 9322 [z3-miay-92 [SH_CLERK || 3000 | | 124 | 40
[EMFLOYEE_ID [FIRST_MAME [LAST MAME | EMAIL [PHOME_MUMEBER [HIRE_DATE [JOB_ID [SALARY |camm [mgrid [deptid
| 188 | Donald [0Connel |DOCONNEL [650.507 95333 [21-JUN-29 [SH_CLERK || 2600 | | 124 | &0
| 199 | Douglas | Granit [DGRANT ||650.507 0844 [13-JaN-00 [SH_CLERK || 2600 | | 124 | 80
| 200 [Jennifer [Whalen | WWHALEN ||515.123.4444 [17-5EP-87 |[AD_A3ST || 4400 | | 101 | 10
| 201 [hichael |Hartstein | [WMHARTSTE ||515.123 5555 [17-FEB-96 | [hk_han | 13000 || | 100 | z0
| 02 [Pat |Fay |PFacy 603123 AE66 [17-AG-97 ||pk_REP | &ooo || | 201 | 20
| 203 [Susan iz [smenRIS |515.123 7777 [07-JUN-34 ||HR_REP | as00 || | 101 | 40
| 204 |[Hermann |Baer |HBAER |515.123 8838 [07-JUN-34 ||PR_REP | 10000 || | 11| 70
| 205 || Shelley |Higgins ~ |SHIGGING | |515.123.3080 [07-JUN-94 | |AC_MGR | 1z000 | | w01 110
| 206 |[Williarm | Gietz pGIETZ (515,123 8181 [07-JUN-84 [AC_ACCOUNT | 2300 | | 205 | 110

107 rows selected.

Oracle9i: PL/SQL Fundamentals B-12

JOB_H STORY Table

DESCRI BE j ob_hi story

| Hame | Mull? | Type
IEMPLOYEE_ID INOT NULL INUMBER(E)

ISTART_DATE INOT NULL IDATE

[END_DATE INOT NULL IDATE

OB ID INOT NULL WARCHARZ(10)

IDEPARTMENT _ID | INUWMBER(4)

SELECT * FROM job_hi story;

| EMPLOYEEID | START DAT | END DATE | JOB_ID | deptid

| 102 |13-JAN-93 24-UL-98 IT_PROG | B0
| 101 [21-5EP-89 27-0CT-23 AC_ACCOUNT | 110
| 101 [28-0CT-93 1E-MAR-97 AC_MGR | 110
| 201 [17-FEB-96 119-DEC-93 WIK_REP | 20
| 114 [24-MAR-93 31-DEC-93 ST _CLERK | 50
| 122 |01-JAN-99 31-DEC-99 ST _CLERK | 500
| 200 |[17-5EP-87 117-JUN-93 A0 ASST | a0
| 176 [24-MAR-93 31-DEC-93 SA_REP | a0
| 176 |01-JAN-93 31-DEC-93 |SA,_ AN | a0
| 200 (01-JUL-94 31-DEC-93 AC_ACCOUNT | a0

10 rows selected.

Oracle9i: PL/SQL Fundamentals B-13

Oracle9i: PL/SQL Fundamentals B-14

REF Cursors

Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor Variables

® Cursor variables are like C or Pascal pointers,
which hold the memory location (address) of an
item instead of the item itself

* In PL/SQL, a pointer is declared as REF X, where
REF is short for REFERENCE and X stands for a
class of objects

® A cursor variable has the data type REF CURSCOR
®* A cursor is static, but a cursor variable is dynamic
®* Cursor variables give you more flexibility

C-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor Variables

Cursor variables are like C or Pascal pointers, which hold the memory location (address) of some
item instead of theitem itsalf. Thus, declaring a cursor variable creates a pointer, not an item. In
PL/SQL, a pointer has the datatype REF X, where REF is short for REFERENCE and X standsfor a
class of objects. A cursor variable has datatype REF CURSCR.

Like a cursor, a cursor variable points to the current row in the result set of a multirow query.
However, cursors differ from cursor variables the way constants differ from variables. A cursor is
static, but a cursor variable is dynamic because it is not tied to a specific query. You can open a
cursor variable for any type-compatible query. This gives you more flexibility.

Cursor variables are available to every PL/SQL client. For example, you can declare a cursor
variablein aPL/SQL host environment such as an OCI or Pro* C program, and then passit as an
input host variable (bind variable) to PL/SQL. Moreover, application devel opment tools such as
Oracle Forms and Oracle Reports, which have a PL/SQL engine, can use cursor variables entirely on
the client side. The Oracle server also has a PL/SQL engine. Y ou can pass cursor variables back and
forth between an application and server through remote procedure calls (RPCs).

Oracle9i: PL/SQL Fundamentals C-2

Why Use Cursor Variables?

®* You can use cursor variables to pass query result
sets between PL/SQL stored subprograms and
various clients.

® PL/SQL can share a pointer to the query work area
in which the result set is stored.

®* You can pass the value of a cursor variable freely
from one scope to another.

®* You can reduce network traffic by having a
PL/SQL block open (or close) several host cursor
variables in a single round trip.

C-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Why Use Cursor Variables?

Y ou use cursor variablesto pass query result sets between PL/SQL stored subprograms and various
clients. Neither PL/SQL nor any of its clients owns aresult set; they smply share a pointer to the
query work areain which the result set is stored. For example, an OCI client, an Oracle Forms
application, and the Oracle server can all refer to the same work area.

A guery work arearemains accessible aslong as any cursor variable pointsto it. Therefore, you can
pass the vaue of a cursor variable freely from one scope to another. For example, if you pass a host
cursor variableto a PL/SQL block that is embedded in a Pro* C program, the work areato which the
cursor variable points remains accessible after the block compl etes.

If you have a PL/SQL engine on the client side, calls from client to server impose no restrictions.
For example, you can declare a cursor variable on the client side, open and fetch from it on the
server side, then continue to fetch from it back on the client side. Also, you can reduce network
traffic by having a PL/SQL block open (or close) several host cursor variablesin asingle round trip.

A cursor variable holds a reference to the cursor work areain the PGA instead of addressing it with
a static name. Because you address this area by areference, you gain the flexibility of avariable.

Oracle9i: PL/SQL Fundamentals C-3

Defining REF CURSOR Types

* Define a REF CURSORtype.

Define a REF CURSOR type
TYPE ref _type_nane | S REF CURSOR [RETURN return_type];

®* Declare a cursor variable of that type.

ref _cv ref _type_nane;

e Example:

DECLARE

TYPE Dept Cur Typ 1S REF CURSOR RETURN
depar t mrent sUROMYPE;

dept _cv Dept Cur Typ;

C-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining REF CURSOR Types

To definea REF CURSOR, you perform two steps. First, you definea REF CURSOR type, and then
you declare cursor variables of that type. Y ou can define REF CURSOR typesin any PL/SQL block,
subprogram, or package using the following syntax:

TYPE ref _type nanme |'S REF CURSOR [RETURN return_type];

in which:
ref type_name isatype specifier used in subsequent declarations of cursor variables
return_type representsarecord or arow in adatabase table

In the following example, you specify areturn type that represents arow in the database table
DEPARTMENT.

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). As the next example shows,
astrong REF CURSOR type definition specifies areturn type, but aweak definition does not:

DECLARE

TYPE EnmpCur Typ 1S REF CURSOR RETURN enpl oyees%ROMYPE;, - -
strong

TYPE GenericCurTyp IS REF CURSOR, -- weak

Oracle9i: PL/SQL Fundamentals C-4

Defining REF CURSOR Types (continued)

Strong REF CURSOR types are less error prone because the PL/SQL compiler lets you associate a
strongly typed cursor variable only with type-compatible queries. However, weak REF CURSCR
types are more flexible because the compiler lets you associate a weakly typed cursor variable with
any query.

Declaring Cursor Variables

After you define a REF CURSOR type, you can declare cursor variables of that type in any PL/SQL
block or subprogram. In the following example, you declare the cursor variable DEPT_CV:

DECLARE
TYPE Dept Cur Typ | S REF CURSOR RETURN depart ment s¥%ROM YPE;
dept _cv Dept CurTyp; -- declare cursor variable

Note: You cannot declare cursor variablesin a package. Unlike packaged variables, cursor variables
do not have persistent states. Remember, declaring a cursor variable creates a pointer, not an item.
Cursor variables cannot be saved in the database; they follow the usua scoping and instantiation
rules.

Inthe RETURN clause of aREF CURSOR type definition, you can use %60WT YPE to specify a
][eﬁord type that represents arow returned by a strongly (not weakly) typed cursor variable, as
ollows:

DECLARE
TYPE TnpCur Typ | S REF CURSOR RETURN enpl oyees%RON YPE;
tnmp_cv TnpCur Typ; -- declare cursor variable
TYPE EnpCur Typ | S REF CURSOR RETURN t np_cv%ROMYPE;
enp_cv EmpCur Typ; -- declare cursor variable

Likewise, you can use % YPE to provide the datatype of arecord variable, as the following example
shows:

DECLARE
dept _rec departnent s¥ROMYPE; -- declare record variable
TYPE Dept Cur Typ |'S REF CURSOR RETURN dept rec%lYPE;
dept _cv Dept Cur Typ; -- declare cursor variable
In the final example, you specify a user-defined RECORD type in the RETURN clause:
DECLARE
TYPE EnpRecTyp |'S RECORD (
enpno NUMBER(4),
enane VARCHAR2(10,
sal NUMBER(7, 2));
TYPE EnpCur Typ IS REF CURSOR RETURN EnpRecTyp;
enp_cv EmpCur Typ; -- declare cursor variable
Cursor Variables As Parameters

You can declare cursor variables as the formal parameters of functions and procedures. In the
following example, you define the REF CURSOR type EnpCur Typ, and then declare a cursor
variable of that type asthe formal parameter of a procedure:

DECLARE
TYPE EnpCur Typ IS REF CURSOR RETURN enmp%RONYPE;
PROCEDURE open_enp_cv (enp_cv IN OUT EnpCurTyp) IS ...

Oracle9i: PL/SQL Fundamentals C-5

Using the OPEN- FOR, FETCH, and CLOSE
Statements

* The OPEN- FOR statement associates a cursor
variable with a multirow query, executes the
guery, identifies the result set, and positions the
cursor to point to the first row of the result set.

* The FETCHstatement returns a row from the result
set of a multirow query, assigns the values of

select-list items to corresponding variables or
fields in the | NTOclause, increments the count

kept by RONCOUNT, and advances the cursor to
the next row.

* The CLCSE statement disables a cursor variable.

C-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the OPEN- FOR, FETCH, and CLOSE Statements

Y ou use three statements to process a dynamic multirow query: OPEN- FOR, FETCH, and
CLCSE. First, you OPEN a cursor variable FOR a multirow query. Then, you FETCH rows from the
result set one at atime. When all the rows are processed, you CLCOSE the cursor variable.

Opening the Cursor Variable

The OPEN- FOR statement associates a cursor variable with a multirow query, executes the query,
identifies the result set, positions the cursor to point to the first row of the results set, then setsthe
rows-processed count kept by ¥%6R0OWCOUNT to zero. Unlike the static form of OPEN- FOR, the
dynamic form has an optional USI NG clause. At run time, bind argumentsin the USI NG clause
replace corresponding placeholdersin the dynamic SELECT statement. The syntax is:

OPEN {cursor_variable | :host_cursor_variable} FOR dynam c_string
[USI NG bi nd_argunent[, bind_argunent]...];

where CURSOR_VARI ABLE isaweakly typed cursor variable (one without a return type),
HOST _CURSOR_VARI ABLE isacursor variable declared in a PL/SQL host environment such as an
OCI program, and dynami ¢_st ri ng isastring expression that represents a multirow query.

Oracle9i: PL/SQL Fundamentals C-6

Using the OPEN- FOR, FETCH, and CLCSE Statements (continued)

In the following example, the syntax declares a cursor variable, and then associatesit with a
dynamic SELECT statement that returns rows from the EMPLOYEES table:

DECLARE
TYPE EnmpCur Typ IS REF CURSOR, -- define weak REF CURSCR type
enp_cv EmpCur Typ; -- declare cursor variable

ny_ename VARCHAR2(15);
nmy_sal NUMBER : = 1000:;

BEG N
OPEN enp_cv FOR -- open cursor variable
" SELECT | ast _nane, sal ary FROM enpl oyees WHERE salary > :s’
USI NG ny_sal ;
END;

Any bind arguments in the query are evaluated only when the cursor variable is opened. Thus, to
fetch rows from the cursor using different bind values, you must reopen the cursor variable with the
bind arguments set to their new values.

Fetching from the Cursor Variable

The FETCH statement returns arow from the result set of a multirow query, assigns the values of
select-list items to corresponding variables or fieldsin the | NTOclause, increments the count kept
by 9RONCOUNT, and advances the cursor to the next row. Use the following syntax:

FETCH {cursor _variable | :host_cursor_vari abl e}
| NTO {define _variable[, define variable]... | record};

Continuing the example, fetch rows from cursor variable EMP_CV into define variables MY_ENAVE
and MY_SAL:

LOOP

FETCH enp_cv INTO ny_enane, ny_sal; -- fetch next row

EXIT WHEN enp_cvYNOTFOUND;, -- exit |loop when last rowis fetched
-- process row

END LOOP;

For each column value returned by the quer%/ associated with the cursor variable, there must be a
corresponding, type-compatible variable or field in the | NTOclause. Y ou can use adifferent | NTO
clause on separate fetches with the same cursor variable. Each fetch retrieves another row from the
same result set. If you try to fetch from a closed or never-opened cursor variable, PL/SQL raisesthe
predefined exception | NVALI D_CURSOR.

Closing the Cursor Variable

The CLOSE statement disables a cursor variable. After that, the associated result set is undefined.
Use the following syntax:

CLCSE {cursor_variable | :host_cursor_variabl e};
In this example, when the last row is processed, close cursor variable EMP_CV:
LOOP
FETCH enp_cv I NTO ny_enane, ny_sal;
EXIT WHEN enp_cv¥NOTFOUND;
-- process row
END LOOP;
CLCSE enmp_cv; ~-- close cursor variable

If you try to close an aready-closed or never-opened cursor variable, PL/SQL raises
| NVALI'D_CURSOR.

Oracle9i: PL/SQL Fundamentals C-7

An Example of Fetching

DECLARE
TYPE EnpCur Typ | S REF CURSOR;
enp_cv EnpCur Typ;
enp_rec enpl oyees¥ROMYPE;
sgl _stm VARCHAR2(200);
ny_job VARCHAR2(10) := 'ST_CLERK ;
BEG N
sgl _stm :="'SELECT * FROM enpl oyees
VWHERE job_id = :j’;
OPEN enp_cv FOR sqgl _stnt USI NG ny_j ob;
LOOP
FETCH enp_cv | NTO enp_rec;
EXIT WHEN enp_cv¥%NOTFOUND;
-- process record
END LOOP;
CLOSE enp_cv;
END;
/

C-8 Copyright © Oracle Corporation, 2001. All rights reserved.

An Example of Fetching

The examplein the preceding slide shows that you can fetch rows from the result set of adynamic
multirow query into arecord. First you must definea REF CURSCR type, EnpCur Typ. Next you
define acursor variableenp_cv, of thetype Enpcur Typ. In the executable section of the
PL/SQL block, the OPEN- FOR statement associates the cursor variable EMP_CV with the multirow
guery, sql _st nt . The FETCH statement returns arow from the result set of a multirow query and
assigns the values of select-list itemsto EMP_RECinthel NTO clause. When thelast row is
processed, close the cursor variable EMP_CV.

Oracle9i: PL/SQL Fundamentals C-8

Index

%

%ISOPEN 6-14
%NOTFOUND 6-15
%TYPE 1-23

A

attribute 1-23
Anonymous blocks 1-5
B

basic loop 4-19
Boolean expressions 1-25
Bind variable 1-10
BFILE 1-27

BLOB 1-27

C

clause 3-6,7-5
control structures 4-3
clause 7-7
collections 1-26
comments 2-7
composite data types, 1-9
conversion 2-10
cursor 3-18,6-20
cursor attributes 6-13
CASE 4-3

CLOB 1-27

CLOSE 6-12
COMMIT 3-21

D

declaration section 1-12
declare an explicit cursor 6-7
Delimiters 2-4
DBMS_OUTPUT 1-32
DEFAULT 1-15

E

exception 8-3
exception handler 8-6
expressions 4-3
explicit cursors 6-4
external large object 15-8
ELSIF 4-5

END IF 4-5

EXIT 4-19

F

FETCH 6-10

FOR 4-23

FOR UPDATE 7-5

|

Identifiers 2-5

implicit cursor 3-18
INSERT 3-11

INT 3-6

L

locator 1-9

loop 4-21,4-3

LOB 1-27

N

naming convention 3-16
NCHAR 1-27

NCLOB 1-27

nest loops 4-27

nested blocks 2-12
non-predefined Oracle server error 8-12
]

OPEN 6-9
OTHER 8-6
P

parameter in the cursor declaration 7-3
pointer 1-9

predefined Oracle Server error 8-8
programming guidelines 2-19
propagate the exception 8-18
PRAGMA 8-12

PRINT 1-30

R

reference host variables 1-31
RAISE_APPLICATION_ERROR 8-20
ROLLBACK 3-21

S

statement 4-3

SAVEPOINT 3-21

Scalar data types 1-9

Subprograms 1-5

subquery 7-9

SELECT 34
SQLCODE 8-14
SQLERR 8-14
T

TO_DATE 1-15
u

use 15-13
user-defined exception 8-17
UPDATE 3-12
\%

variables 1-7
W

WHEN OTHER 8-15
WHERE CURRENT OF 7-7
WHILE 4-21

